LaVie / base /text_to_video /__init__.py
Zhouyan248's picture
Update base/text_to_video/__init__.py
a0949d0
raw
history blame
1.84 kB
import os
import torch
import argparse
import torchvision
from pipelines.pipeline_videogen import VideoGenPipeline
from download import find_model
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler
from diffusers.models import AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from omegaconf import OmegaConf
import random
import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from models import get_models
import imageio
config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
def model_t2v_fun(args):
# sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
sd_path = args.pretrained_path
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
state_dict = find_model("./pretrained_models/lavie_base.pt")
# state_dict = find_model("./pretrained_models/lavie_base.pt")
unet.load_state_dict(state_dict)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
unet.eval()
vae.eval()
text_encoder_one.eval()
scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule)
return VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
def setup_seed(seed):
# torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
random.seed(seed)