Spaces:
Runtime error
Runtime error
Zhouyan248
commited on
Commit
·
1dade9e
1
Parent(s):
03c3c6a
Update base/app.py
Browse files- base/app.py +54 -22
base/app.py
CHANGED
@@ -15,12 +15,11 @@ args = OmegaConf.load("./base/configs/sample.yaml")
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
# ------- get model ---------------
|
18 |
-
model_t2V = model_t2v_fun(args)
|
19 |
-
model_t2V.to(device)
|
20 |
-
if device == "cuda":
|
21 |
-
|
22 |
|
23 |
-
# model_t2V.enable_xformers_memory_efficient_attention()
|
24 |
css = """
|
25 |
h1 {
|
26 |
text-align: center;
|
@@ -31,13 +30,46 @@ h1 {
|
|
31 |
}
|
32 |
"""
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if seed_inp!=-1:
|
36 |
setup_seed(seed_inp)
|
37 |
else:
|
38 |
seed_inp = random.choice(range(10000000))
|
39 |
setup_seed(seed_inp)
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
print(videos[0].shape)
|
42 |
if not os.path.exists(args.output_folder):
|
43 |
os.mkdir(args.output_folder)
|
@@ -82,7 +114,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
82 |
with gr.Column():
|
83 |
|
84 |
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
|
85 |
-
|
86 |
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
|
87 |
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
|
88 |
cfg = gr.Number(label="guidance_scale",value=7.5)
|
@@ -94,24 +126,24 @@ with gr.Blocks(css='style.css') as demo:
|
|
94 |
clean_btn = gr.Button("Clean video")
|
95 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
96 |
|
97 |
-
inputs = [prompt, seed_inp, ddim_steps,cfg]
|
98 |
outputs = [video_out]
|
99 |
|
100 |
ex = gr.Examples(
|
101 |
-
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
|
102 |
-
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
|
103 |
-
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
|
104 |
-
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
|
105 |
-
['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
|
106 |
-
['a teddy bear walking on the street, 2k, high quality',100,50,7],
|
107 |
-
['a panda taking a selfie, 2k, high quality',400,50,7],
|
108 |
-
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
|
109 |
-
['jungle river at sunset, ultra quality',400,50,7],
|
110 |
-
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
|
111 |
-
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
|
112 |
-
['a confused grizzly bear in calculus class',1000,50,7]],
|
113 |
fn = infer,
|
114 |
-
inputs=[prompt, seed_inp, ddim_steps,cfg],
|
115 |
outputs=[video_out],
|
116 |
cache_examples=False,
|
117 |
)
|
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
# ------- get model ---------------
|
18 |
+
# model_t2V = model_t2v_fun(args)
|
19 |
+
# model_t2V.to(device)
|
20 |
+
# if device == "cuda":
|
21 |
+
# model_t2V.enable_xformers_memory_efficient_attention()
|
22 |
|
|
|
23 |
css = """
|
24 |
h1 {
|
25 |
text-align: center;
|
|
|
30 |
}
|
31 |
"""
|
32 |
|
33 |
+
sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
|
34 |
+
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
|
35 |
+
state_dict = find_model("./pretrained_models/lavie_base.pt")
|
36 |
+
unet.load_state_dict(state_dict)
|
37 |
+
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
|
38 |
+
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
39 |
+
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
|
40 |
+
unet.eval()
|
41 |
+
vae.eval()
|
42 |
+
text_encoder_one.eval()
|
43 |
+
|
44 |
+
def infer(prompt, seed_inp, ddim_steps,cfg, infer_type):
|
45 |
if seed_inp!=-1:
|
46 |
setup_seed(seed_inp)
|
47 |
else:
|
48 |
seed_inp = random.choice(range(10000000))
|
49 |
setup_seed(seed_inp)
|
50 |
+
if infer_type == 'ddim':
|
51 |
+
scheduler = DDIMScheduler.from_pretrained(sd_path,
|
52 |
+
subfolder="scheduler",
|
53 |
+
beta_start=args.beta_start,
|
54 |
+
beta_end=args.beta_end,
|
55 |
+
beta_schedule=args.beta_schedule)
|
56 |
+
elif infer_type == 'eulerdiscrete':
|
57 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path,
|
58 |
+
subfolder="scheduler",
|
59 |
+
beta_start=args.beta_start,
|
60 |
+
beta_end=args.beta_end,
|
61 |
+
beta_schedule=args.beta_schedule)
|
62 |
+
elif infer_type == 'ddpm':
|
63 |
+
scheduler = DDPMScheduler.from_pretrained(sd_path,
|
64 |
+
subfolder="scheduler",
|
65 |
+
beta_start=args.beta_start,
|
66 |
+
beta_end=args.beta_end,
|
67 |
+
beta_schedule=args.beta_schedule)
|
68 |
+
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
|
69 |
+
model.to(device)
|
70 |
+
if device == "cuda":
|
71 |
+
model.enable_xformers_memory_efficient_attention()
|
72 |
+
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
|
73 |
print(videos[0].shape)
|
74 |
if not os.path.exists(args.output_folder):
|
75 |
os.mkdir(args.output_folder)
|
|
|
114 |
with gr.Column():
|
115 |
|
116 |
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
|
117 |
+
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim')
|
118 |
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
|
119 |
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
|
120 |
cfg = gr.Number(label="guidance_scale",value=7.5)
|
|
|
126 |
clean_btn = gr.Button("Clean video")
|
127 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
128 |
|
129 |
+
inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type]
|
130 |
outputs = [video_out]
|
131 |
|
132 |
ex = gr.Examples(
|
133 |
+
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'],
|
134 |
+
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'],
|
135 |
+
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'],
|
136 |
+
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'],
|
137 |
+
['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'],
|
138 |
+
['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'],
|
139 |
+
['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'],
|
140 |
+
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'],
|
141 |
+
['jungle river at sunset, ultra quality',400,50,7,'ddim'],
|
142 |
+
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'],
|
143 |
+
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'],
|
144 |
+
['a confused grizzly bear in calculus class',1000,50,7,'ddim']],
|
145 |
fn = infer,
|
146 |
+
inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type],
|
147 |
outputs=[video_out],
|
148 |
cache_examples=False,
|
149 |
)
|