Spaces:
Runtime error
Runtime error
Zhouyan248
commited on
Commit
·
68a24d9
1
Parent(s):
9fe76e3
Update base/app.py
Browse files- base/app.py +1 -55
base/app.py
CHANGED
@@ -13,9 +13,6 @@ from huggingface_hub import snapshot_download
|
|
13 |
config_path = "./base/configs/sample.yaml"
|
14 |
args = OmegaConf.load("./base/configs/sample.yaml")
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
### download models
|
17 |
-
# snapshot_download('Vchitect/LaVie',cache_dir='./pretrained_models')
|
18 |
-
# snapshot_download('CompVis/stable-diffusion-v1-4',cache_dir='./pretrained_models')
|
19 |
|
20 |
# ------- get model ---------------
|
21 |
model_t2V = model_t2v_fun(args)
|
@@ -45,13 +42,8 @@ def infer(prompt, seed_inp, ddim_steps,cfg):
|
|
45 |
if not os.path.exists(args.output_folder):
|
46 |
os.mkdir(args.output_folder)
|
47 |
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
|
48 |
-
# imageio.mimwrite(args.output_folder + prompt.replace(' ', '_') + '.mp4', videos[0], fps=8)
|
49 |
-
# video = cv2.VideoCapture(args.output_folder + prompt.replace(' ', '_') + '.mp4')
|
50 |
-
# video = imageio.get_reader(args.output_folder + prompt.replace(' ', '_') + '.mp4', 'ffmpeg')
|
51 |
|
52 |
|
53 |
-
# video = model_t2V(prompt, seed_inp, ddim_steps)
|
54 |
-
|
55 |
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
|
56 |
|
57 |
print(1)
|
@@ -81,7 +73,6 @@ title = """
|
|
81 |
</div>
|
82 |
"""
|
83 |
|
84 |
-
# print(1)
|
85 |
with gr.Blocks(css='style.css') as demo:
|
86 |
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
|
87 |
with gr.Column():
|
@@ -97,58 +88,15 @@ with gr.Blocks(css='style.css') as demo:
|
|
97 |
cfg = gr.Number(label="guidance_scale",value=7.5)
|
98 |
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in")
|
99 |
|
100 |
-
# with gr.Row():
|
101 |
-
# # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
|
102 |
-
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
|
103 |
-
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
|
104 |
-
|
105 |
-
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
|
106 |
-
# ex = gr.Examples(
|
107 |
-
# examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
|
108 |
-
# ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
|
109 |
-
# ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
|
110 |
-
# ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
|
111 |
-
# ['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
|
112 |
-
# ['a teddy bear walking on the street, 2k, high quality',100,50,7],
|
113 |
-
# ['a panda taking a selfie, 2k, high quality',400,50,7],
|
114 |
-
# ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
|
115 |
-
# ['jungle river at sunset, ultra quality',400,50,7],
|
116 |
-
# ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
|
117 |
-
# ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
|
118 |
-
# ['a confused grizzly bear in calculus class',1000,50,7]],
|
119 |
-
# fn = infer,
|
120 |
-
# inputs=[prompt, seed_inp, ddim_steps,cfg],
|
121 |
-
# # outputs=[video_out],
|
122 |
-
# cache_examples=False,
|
123 |
-
# examples_per_page = 6
|
124 |
-
# )
|
125 |
-
# ex.dataset.headers = [""]
|
126 |
|
127 |
with gr.Column():
|
128 |
submit_btn = gr.Button("Generate video")
|
129 |
clean_btn = gr.Button("Clean video")
|
130 |
-
# submit_btn = gr.Button("Generate video", size='sm')
|
131 |
-
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
|
132 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
133 |
-
# with gr.Row():
|
134 |
-
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
|
135 |
-
# submit_btn = gr.Button("Generate video", size='sm')
|
136 |
-
|
137 |
|
138 |
-
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
|
139 |
inputs = [prompt, seed_inp, ddim_steps,cfg]
|
140 |
outputs = [video_out]
|
141 |
-
|
142 |
-
# value = [['An astronaut riding a horse',123,50],
|
143 |
-
# ['a panda eating bamboo on a rock',123,50],
|
144 |
-
# ['Spiderman is surfing',123,50]],
|
145 |
-
# label = "example of sampling",
|
146 |
-
# show_label = True,
|
147 |
-
# headers = ['prompt','seed','steps'],
|
148 |
-
# datatype = ['str','number','number'],
|
149 |
-
# row_count=4,
|
150 |
-
# col_count=(3,"fixed")
|
151 |
-
# )
|
152 |
ex = gr.Examples(
|
153 |
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
|
154 |
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
|
@@ -169,8 +117,6 @@ with gr.Blocks(css='style.css') as demo:
|
|
169 |
)
|
170 |
ex.dataset.headers = [""]
|
171 |
|
172 |
-
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
|
173 |
-
# submit_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
174 |
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
175 |
submit_btn.click(infer, inputs, outputs)
|
176 |
# share_button.click(None, [], [], _js=share_js)
|
|
|
13 |
config_path = "./base/configs/sample.yaml"
|
14 |
args = OmegaConf.load("./base/configs/sample.yaml")
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
16 |
|
17 |
# ------- get model ---------------
|
18 |
model_t2V = model_t2v_fun(args)
|
|
|
42 |
if not os.path.exists(args.output_folder):
|
43 |
os.mkdir(args.output_folder)
|
44 |
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
|
|
|
|
|
|
|
45 |
|
46 |
|
|
|
|
|
47 |
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
|
48 |
|
49 |
print(1)
|
|
|
73 |
</div>
|
74 |
"""
|
75 |
|
|
|
76 |
with gr.Blocks(css='style.css') as demo:
|
77 |
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
|
78 |
with gr.Column():
|
|
|
88 |
cfg = gr.Number(label="guidance_scale",value=7.5)
|
89 |
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in")
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
with gr.Column():
|
93 |
submit_btn = gr.Button("Generate video")
|
94 |
clean_btn = gr.Button("Clean video")
|
|
|
|
|
95 |
video_out = gr.Video(label="Video result", elem_id="video-output")
|
|
|
|
|
|
|
|
|
96 |
|
|
|
97 |
inputs = [prompt, seed_inp, ddim_steps,cfg]
|
98 |
outputs = [video_out]
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
ex = gr.Examples(
|
101 |
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
|
102 |
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
|
|
|
117 |
)
|
118 |
ex.dataset.headers = [""]
|
119 |
|
|
|
|
|
120 |
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
|
121 |
submit_btn.click(infer, inputs, outputs)
|
122 |
# share_button.click(None, [], [], _js=share_js)
|