Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from gradio_litmodel3d import LitModel3D | |
import os | |
from typing import * | |
import imageio | |
import uuid | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.utils import render_utils, postprocessing_utils | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
Image.Image: The preprocessed image. | |
""" | |
return pipeline.preprocess_image(image) | |
def image_to_3d(image: Image.Image) -> Tuple[dict, str]: | |
""" | |
Convert an image to a 3D model. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
dict: The information of the generated 3D model. | |
str: The path to the video of the 3D model. | |
""" | |
outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False) | |
video = render_utils.render_video(outputs['gaussian'][0])['color'] | |
model_id = uuid.uuid4() | |
video_path = f"/tmp/Trellis-demo/{model_id}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
imageio.mimsave(video_path, video, fps=30) | |
model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id} | |
return model, video_path | |
def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
model (dict): The generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size) | |
glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb" | |
glb.export(glb_path) | |
return glb_path, glb_path | |
def activate_button() -> gr.Button: | |
return gr.Button(interactive=True) | |
def deactivate_button() -> gr.Button: | |
return gr.Button(interactive=False) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
generate_btn = gr.Button("Generate", interactive=False) | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = gr.Model3D(label="Extracted GLB", height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
# Example images at the bottom of the page | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=lambda image: (preprocess_image(image), gr.Button(interactive=True)), | |
outputs=[image_prompt, generate_btn], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
model = gr.State() | |
# Handlers | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt], | |
).then( | |
activate_button, | |
outputs=[generate_btn], | |
) | |
image_prompt.clear( | |
deactivate_button, | |
outputs=[generate_btn], | |
) | |
generate_btn.click( | |
image_to_3d, | |
inputs=[image_prompt], | |
outputs=[model, video_output], | |
).then( | |
activate_button, | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
deactivate_button, | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[model, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
activate_button, | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
deactivate_button, | |
outputs=[download_glb], | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
demo.launch() | |