Spaces:
Sleeping
Sleeping
from typing import * | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .. import SparseTensor | |
from .full_attn import sparse_scaled_dot_product_attention | |
from .serialized_attn import SerializeMode, sparse_serialized_scaled_dot_product_self_attention | |
from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention | |
from ...attention import RotaryPositionEmbedder | |
class SparseMultiHeadRMSNorm(nn.Module): | |
def __init__(self, dim: int, heads: int): | |
super().__init__() | |
self.scale = dim ** 0.5 | |
self.gamma = nn.Parameter(torch.ones(heads, dim)) | |
def forward(self, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]: | |
x_type = x.dtype | |
x = x.float() | |
if isinstance(x, SparseTensor): | |
x = x.replace(F.normalize(x.feats, dim=-1)) | |
else: | |
x = F.normalize(x, dim=-1) | |
return (x * self.gamma * self.scale).to(x_type) | |
class SparseMultiHeadAttention(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
num_heads: int, | |
ctx_channels: Optional[int] = None, | |
type: Literal["self", "cross"] = "self", | |
attn_mode: Literal["full", "serialized", "windowed"] = "full", | |
window_size: Optional[int] = None, | |
shift_sequence: Optional[int] = None, | |
shift_window: Optional[Tuple[int, int, int]] = None, | |
serialize_mode: Optional[SerializeMode] = None, | |
qkv_bias: bool = True, | |
use_rope: bool = False, | |
qk_rms_norm: bool = False, | |
): | |
super().__init__() | |
assert channels % num_heads == 0 | |
assert type in ["self", "cross"], f"Invalid attention type: {type}" | |
assert attn_mode in ["full", "serialized", "windowed"], f"Invalid attention mode: {attn_mode}" | |
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention" | |
assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention" | |
self.channels = channels | |
self.ctx_channels = ctx_channels if ctx_channels is not None else channels | |
self.num_heads = num_heads | |
self._type = type | |
self.attn_mode = attn_mode | |
self.window_size = window_size | |
self.shift_sequence = shift_sequence | |
self.shift_window = shift_window | |
self.serialize_mode = serialize_mode | |
self.use_rope = use_rope | |
self.qk_rms_norm = qk_rms_norm | |
if self._type == "self": | |
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias) | |
else: | |
self.to_q = nn.Linear(channels, channels, bias=qkv_bias) | |
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias) | |
if self.qk_rms_norm: | |
self.q_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads) | |
self.k_rms_norm = SparseMultiHeadRMSNorm(channels // num_heads, num_heads) | |
self.to_out = nn.Linear(channels, channels) | |
if use_rope: | |
self.rope = RotaryPositionEmbedder(channels) | |
def _linear(module: nn.Linear, x: Union[SparseTensor, torch.Tensor]) -> Union[SparseTensor, torch.Tensor]: | |
if isinstance(x, SparseTensor): | |
return x.replace(module(x.feats)) | |
else: | |
return module(x) | |
def _reshape_chs(x: Union[SparseTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[SparseTensor, torch.Tensor]: | |
if isinstance(x, SparseTensor): | |
return x.reshape(*shape) | |
else: | |
return x.reshape(*x.shape[:2], *shape) | |
def _fused_pre(self, x: Union[SparseTensor, torch.Tensor], num_fused: int) -> Union[SparseTensor, torch.Tensor]: | |
if isinstance(x, SparseTensor): | |
x_feats = x.feats.unsqueeze(0) | |
else: | |
x_feats = x | |
x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1) | |
return x.replace(x_feats.squeeze(0)) if isinstance(x, SparseTensor) else x_feats | |
def _rope(self, qkv: SparseTensor) -> SparseTensor: | |
q, k, v = qkv.feats.unbind(dim=1) # [T, H, C] | |
q, k = self.rope(q, k, qkv.coords[:, 1:]) | |
qkv = qkv.replace(torch.stack([q, k, v], dim=1)) | |
return qkv | |
def forward(self, x: Union[SparseTensor, torch.Tensor], context: Optional[Union[SparseTensor, torch.Tensor]] = None) -> Union[SparseTensor, torch.Tensor]: | |
if self._type == "self": | |
qkv = self._linear(self.to_qkv, x) | |
qkv = self._fused_pre(qkv, num_fused=3) | |
if self.use_rope: | |
qkv = self._rope(qkv) | |
if self.qk_rms_norm: | |
q, k, v = qkv.unbind(dim=1) | |
q = self.q_rms_norm(q) | |
k = self.k_rms_norm(k) | |
qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1)) | |
if self.attn_mode == "full": | |
h = sparse_scaled_dot_product_attention(qkv) | |
elif self.attn_mode == "serialized": | |
h = sparse_serialized_scaled_dot_product_self_attention( | |
qkv, self.window_size, serialize_mode=self.serialize_mode, shift_sequence=self.shift_sequence, shift_window=self.shift_window | |
) | |
elif self.attn_mode == "windowed": | |
h = sparse_windowed_scaled_dot_product_self_attention( | |
qkv, self.window_size, shift_window=self.shift_window | |
) | |
else: | |
q = self._linear(self.to_q, x) | |
q = self._reshape_chs(q, (self.num_heads, -1)) | |
kv = self._linear(self.to_kv, context) | |
kv = self._fused_pre(kv, num_fused=2) | |
if self.qk_rms_norm: | |
q = self.q_rms_norm(q) | |
k, v = kv.unbind(dim=1) | |
k = self.k_rms_norm(k) | |
kv = kv.replace(torch.stack([k.feats, v.feats], dim=1)) | |
h = sparse_scaled_dot_product_attention(q, kv) | |
h = self._reshape_chs(h, (-1,)) | |
h = self._linear(self.to_out, h) | |
return h | |