Spaces:
Sleeping
Sleeping
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
try: | |
import kaolin as kal | |
import nvdiffrast.torch as dr | |
except : | |
print("Kaolin and nvdiffrast are not installed. Please install them to use the mesh renderer.") | |
from easydict import EasyDict as edict | |
from ..representations.mesh import MeshExtractResult | |
import torch.nn.functional as F | |
def intrinsics_to_projection( | |
intrinsics: torch.Tensor, | |
near: float, | |
far: float, | |
) -> torch.Tensor: | |
""" | |
OpenCV intrinsics to OpenGL perspective matrix | |
Args: | |
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix | |
near (float): near plane to clip | |
far (float): far plane to clip | |
Returns: | |
(torch.Tensor): [4, 4] OpenGL perspective matrix | |
""" | |
fx, fy = intrinsics[0, 0], intrinsics[1, 1] | |
cx, cy = intrinsics[0, 2], intrinsics[1, 2] | |
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) | |
ret[0, 0] = 2 * fx | |
ret[1, 1] = 2 * fy | |
ret[0, 2] = 2 * cx - 1 | |
ret[1, 2] = - 2 * cy + 1 | |
ret[2, 2] = far / (far - near) | |
ret[2, 3] = near * far / (near - far) | |
ret[3, 2] = 1. | |
return ret | |
class MeshRenderer: | |
""" | |
Renderer for the Mesh representation. | |
Args: | |
rendering_options (dict): Rendering options. | |
glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop. | |
""" | |
def __init__(self, rendering_options={}, device='cuda'): | |
self.rendering_options = edict({ | |
"resolution": None, | |
"near": None, | |
"far": None, | |
"ssaa": 1 | |
}) | |
self.rendering_options.update(rendering_options) | |
self.glctx = dr.RasterizeCudaContext(device=device) | |
self.device=device | |
def render( | |
self, | |
mesh : MeshExtractResult, | |
extrinsics: torch.Tensor, | |
intrinsics: torch.Tensor, | |
return_types = ["mask", "normal", "depth"] | |
) -> edict: | |
""" | |
Render the mesh. | |
Args: | |
mesh : meshmodel | |
extrinsics (torch.Tensor): (4, 4) camera extrinsics | |
intrinsics (torch.Tensor): (3, 3) camera intrinsics | |
return_types (list): list of return types, can be "mask", "depth", "normal_map", "normal", "color" | |
Returns: | |
edict based on return_types containing: | |
color (torch.Tensor): [3, H, W] rendered color image | |
depth (torch.Tensor): [H, W] rendered depth image | |
normal (torch.Tensor): [3, H, W] rendered normal image | |
normal_map (torch.Tensor): [3, H, W] rendered normal map image | |
mask (torch.Tensor): [H, W] rendered mask image | |
""" | |
resolution = self.rendering_options["resolution"] | |
near = self.rendering_options["near"] | |
far = self.rendering_options["far"] | |
ssaa = self.rendering_options["ssaa"] | |
if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
default_img = torch.zeros((1, resolution, resolution, 3), dtype=torch.float32, device=self.device) | |
ret_dict = {k : default_img if k in ['normal', 'normal_map', 'color'] else default_img[..., :1] for k in return_types} | |
return ret_dict | |
perspective = intrinsics_to_projection(intrinsics, near, far) | |
RT = extrinsics.unsqueeze(0) | |
full_proj = (perspective @ extrinsics).unsqueeze(0) | |
vertices = mesh.vertices.unsqueeze(0) | |
vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1) | |
vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2)) | |
vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2)) | |
faces_int = mesh.faces.int() | |
rast, _ = dr.rasterize( | |
self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa)) | |
out_dict = edict() | |
for type in return_types: | |
img = None | |
if type == "mask" : | |
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int) | |
elif type == "depth": | |
img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_int)[0] | |
img = dr.antialias(img, rast, vertices_clip, faces_int) | |
elif type == "normal" : | |
img = dr.interpolate( | |
mesh.face_normal.reshape(1, -1, 3), rast, | |
torch.arange(mesh.faces.shape[0] * 3, device=self.device, dtype=torch.int).reshape(-1, 3) | |
)[0] | |
img = dr.antialias(img, rast, vertices_clip, faces_int) | |
# normalize norm pictures | |
img = (img + 1) / 2 | |
elif type == "normal_map" : | |
img = dr.interpolate(mesh.vertex_attrs[:, 3:].contiguous(), rast, faces_int)[0] | |
img = dr.antialias(img, rast, vertices_clip, faces_int) | |
elif type == "color" : | |
img = dr.interpolate(mesh.vertex_attrs[:, :3].contiguous(), rast, faces_int)[0] | |
img = dr.antialias(img, rast, vertices_clip, faces_int) | |
if ssaa > 1: | |
img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True) | |
img = img.squeeze() | |
else: | |
img = img.permute(0, 3, 1, 2).squeeze() | |
out_dict[type] = img | |
return out_dict | |