JeffreyXiang commited on
Commit
3057b36
·
1 Parent(s): 4a3087a
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  # from gradio_litmodel3d import LitModel3D
3
 
4
  import os
@@ -23,6 +24,7 @@ def preprocess_image(image: Image.Image) -> Image.Image:
23
  return pipeline.preprocess_image(image)
24
 
25
 
 
26
  def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
27
  """
28
  Convert an image to a 3D model.
@@ -44,6 +46,7 @@ def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
44
  return model, video_path
45
 
46
 
 
47
  def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
48
  """
49
  Extract a GLB file from the 3D model.
 
1
  import gradio as gr
2
+ import spaces
3
  # from gradio_litmodel3d import LitModel3D
4
 
5
  import os
 
24
  return pipeline.preprocess_image(image)
25
 
26
 
27
+ @spaces.GPU
28
  def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
29
  """
30
  Convert an image to a 3D model.
 
46
  return model, video_path
47
 
48
 
49
+ @spaces.GPU
50
  def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
51
  """
52
  Extract a GLB file from the 3D model.
trellis/models/structured_latent_vae/decoder_mesh.py CHANGED
@@ -102,8 +102,8 @@ class SLatMeshDecoder(SparseTransformerBase):
102
  )
103
  self.resolution = resolution
104
  self.rep_config = representation_config
105
- mesh_extractor = SparseFeatures2Mesh('cpu', res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
106
- self.out_channels = mesh_extractor.feats_channels
107
  self.upsample = nn.ModuleList([
108
  SparseSubdivideBlock3d(
109
  channels=model_channels,
@@ -153,9 +153,8 @@ class SLatMeshDecoder(SparseTransformerBase):
153
  list of representations
154
  """
155
  ret = []
156
- mesh_extractor = SparseFeatures2Mesh(x.device, res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
157
  for i in range(x.shape[0]):
158
- mesh = mesh_extractor(x[i], training=self.training)
159
  ret.append(mesh)
160
  return ret
161
 
 
102
  )
103
  self.resolution = resolution
104
  self.rep_config = representation_config
105
+ self.mesh_extractor = SparseFeatures2Mesh(res=self.resolution*4, use_color=self.rep_config.get('use_color', False))
106
+ self.out_channels = self.mesh_extractor.feats_channels
107
  self.upsample = nn.ModuleList([
108
  SparseSubdivideBlock3d(
109
  channels=model_channels,
 
153
  list of representations
154
  """
155
  ret = []
 
156
  for i in range(x.shape[0]):
157
+ mesh = self.mesh_extractor(x[i], training=self.training)
158
  ret.append(mesh)
159
  return ret
160