File size: 8,094 Bytes
e39f873
 
801048f
e39f873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801048f
e39f873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801048f
e39f873
801048f
 
 
 
 
 
 
 
e39f873
 
 
 
 
801048f
 
 
 
 
 
 
e39f873
801048f
e39f873
801048f
 
 
 
 
 
e39f873
 
801048f
e39f873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801048f
 
e39f873
801048f
e39f873
 
 
 
 
 
 
 
 
 
 
 
 
801048f
e39f873
 
801048f
e39f873
801048f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e39f873
 
 
801048f
e39f873
801048f
e39f873
 
 
 
 
 
 
801048f
 
 
e39f873
801048f
 
 
 
 
e39f873
801048f
e39f873
 
801048f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import streamlit as st
import json
from typing import Iterable
from moa.agent import MOAgent
from moa.agent.moa import ResponseChunk
from streamlit_ace import st_ace
import copy

# Default configuration
default_config = {
    "main_model": "llama3-70b-8192",
    "cycles": 3,
    "layer_agent_config": {}
}

layer_agent_config_def = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192"
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "gemma-7b-it",
        "temperature": 0.7
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192"
    },
}

# Recommended Configuration
rec_config = {
    "main_model": "llama3-70b-8192",
    "cycles": 2,
    "layer_agent_config": {}
}

layer_agent_config_rec = {
    "layer_agent_1": {
        "system_prompt": "Think through your response step by step. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.1
    },
    "layer_agent_2": {
        "system_prompt": "Respond with a thought and then your response to the question. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.2
    },
    "layer_agent_3": {
        "system_prompt": "You are an expert at logic and reasoning. Always take a logical approach to the answer. {helper_response}",
        "model_name": "llama3-8b-8192",
        "temperature": 0.4
    },
    "layer_agent_4": {
        "system_prompt": "You are an expert planner agent. Create a plan for how to answer the human's query. {helper_response}",
        "model_name": "mixtral-8x7b-32768",
        "temperature": 0.5
    },
}

def stream_response(messages: Iterable[ResponseChunk]):
    layer_outputs = {}
    progress_bar = st.progress(0)
    total_steps = len(messages)  # Estimate total messages for progress tracking
    current_step = 0

    for message in messages:
        current_step += 1
        progress_bar.progress(current_step / total_steps)
        
        if message['response_type'] == 'intermediate':
            layer = message['metadata']['layer']
            if layer not in layer_outputs:
                layer_outputs[layer] = []
            layer_outputs[layer].append(message['delta'])
            
            # Real-time rendering for intermediate outputs
            with st.container():
                st.markdown(f"**Layer {layer} (In Progress)**")
                for output in layer_outputs[layer]:
                    st.markdown(f"- {output}")

        else:
            # Finalize and display accumulated layer outputs
            for layer, outputs in layer_outputs.items():
                st.markdown(f"### Layer {layer} Final Output")
                for output in outputs:
                    st.write(output)
            layer_outputs = {}  # Reset for next layers
            
            # Yield the main agent's output
            yield message['delta']

    progress_bar.empty()  # Clear progress bar once done

def set_moa_agent(
    main_model: str = default_config['main_model'],
    cycles: int = default_config['cycles'],
    layer_agent_config: dict[dict[str, any]] = copy.deepcopy(layer_agent_config_def),
    main_model_temperature: float = 0.1,
    override: bool = False
):
    if override or ("main_model" not in st.session_state):
        st.session_state.main_model = main_model

    if override or ("cycles" not in st.session_state):
        st.session_state.cycles = cycles

    if override or ("layer_agent_config" not in st.session_state):
        st.session_state.layer_agent_config = layer_agent_config

    if override or ("main_temp" not in st.session_state):
        st.session_state.main_temp = main_model_temperature

    cls_ly_conf = copy.deepcopy(st.session_state.layer_agent_config)
    if override or ("moa_agent" not in st.session_state):
        st.session_state.moa_agent = MOAgent.from_config(
            main_model=st.session_state.main_model,
            cycles=st.session_state.cycles,
            layer_agent_config=cls_ly_conf,
            temperature=st.session_state.main_temp
        )

    del cls_ly_conf

st.set_page_config(
    page_title="Mixture of Agents",
    layout="wide",
    menu_items={'About': "## Mixture-of-Agents\nPowered by Groq"}
)

valid_model_names = [
    'llama3-70b-8192',
    'llama3-8b-8192',
    'gemma-7b-it',
    'gemma2-9b-it',
    'mixtral-8x7b-32768'
]

if "messages" not in st.session_state:
    st.session_state.messages = []

set_moa_agent()

# Sidebar Configuration
with st.sidebar:
    st.title("MOA Configuration")
    with st.form("Agent Configuration", clear_on_submit=False):
        if st.form_submit_button("Use Recommended Config"):
            set_moa_agent(
                main_model=rec_config['main_model'],
                cycles=rec_config['cycles'],
                layer_agent_config=layer_agent_config_rec,
                override=True
            )
            st.session_state.messages = []
            st.success("Configuration updated successfully!")

        # Config toggling
        show_advanced = st.checkbox("Show Advanced Configurations")
        if show_advanced:
            new_main_model = st.selectbox(
                "Main Model",
                valid_model_names,
                index=valid_model_names.index(st.session_state.main_model)
            )

            new_cycles = st.number_input(
                "Number of Layers",
                min_value=1,
                max_value=10,
                value=st.session_state.cycles
            )

            main_temperature = st.slider(
                "Main Model Temperature",
                min_value=0.0,
                max_value=1.0,
                value=st.session_state.main_temp,
                step=0.05
            )

            new_layer_agent_config = st_ace(
                value=json.dumps(st.session_state.layer_agent_config, indent=2),
                language="json",
                show_gutter=False,
                wrap=True,
                auto_update=True
            )
            
            if st.form_submit_button("Update Config"):
                try:
                    parsed_config = json.loads(new_layer_agent_config)
                    set_moa_agent(
                        main_model=new_main_model,
                        cycles=new_cycles,
                        layer_agent_config=parsed_config,
                        main_model_temperature=main_temperature,
                        override=True
                    )
                    st.session_state.messages = []
                    st.success("Configuration updated successfully!")
                except json.JSONDecodeError:
                    st.error("Invalid JSON in Layer Agent Config.")
                except Exception as e:
                    st.error(f"Error updating config: {str(e)}")

# Main app layout
st.header("Mixture of Agents")
st.markdown("Real-time response tracking with intermediate and final results.")
with st.expander("Current MOA Configuration", expanded=False):
    st.json(st.session_state.layer_agent_config)

# Chat interface
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if query := st.chat_input("Ask a question"):
    st.session_state.messages.append({"role": "user", "content": query})
    with st.chat_message("user"):
        st.markdown(query)

    moa_agent: MOAgent = st.session_state.moa_agent
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        ast_mess = stream_response(moa_agent.chat(query, output_format="json"))
        response = st.write_stream(ast_mess)

    st.session_state.messages.append({"role": "assistant", "content": response})

st.markdown("---")
st.markdown("Powered by [Groq](https://groq.com).")