DrishtiShrrrma commited on
Commit
dda2773
β€’
1 Parent(s): 95df285

Added moa folder

Browse files
Mixture-of-Agents-running-on-Groq ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 2a8a77223b8011554035137da207538f4683514c
moa/__init__.py ADDED
File without changes
moa/agent/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .moa import MOAgent
moa/agent/moa.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Langchain agent
3
+ """
4
+ from typing import Generator, Dict, Optional, Literal, TypedDict, List
5
+ from dotenv import load_dotenv
6
+
7
+ from langchain_groq import ChatGroq
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
10
+ from langchain_core.messages import BaseMessage
11
+ from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableSerializable
12
+ from langchain_core.output_parsers import StrOutputParser
13
+
14
+ from .prompts import SYSTEM_PROMPT, REFERENCE_SYSTEM_PROMPT
15
+
16
+ load_dotenv()
17
+ valid_model_names = Literal[
18
+ 'llama3-70b-8192',
19
+ 'llama3-8b-8192',
20
+ 'gemma-7b-it',
21
+ 'gemma2-9b-it',
22
+ 'mixtral-8x7b-32768'
23
+ ]
24
+
25
+ class ResponseChunk(TypedDict):
26
+ delta: str
27
+ response_type: Literal['intermediate', 'output']
28
+ metadata: Dict = {}
29
+
30
+
31
+ class MOAgent:
32
+ def __init__(
33
+ self,
34
+ main_agent: RunnableSerializable[Dict, str],
35
+ layer_agent: RunnableSerializable[Dict, Dict],
36
+ reference_system_prompt: Optional[str] = None,
37
+ cycles: Optional[int] = None,
38
+ chat_memory: Optional[ConversationBufferMemory] = None
39
+ ) -> None:
40
+ self.reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
41
+ self.main_agent = main_agent
42
+ self.layer_agent = layer_agent
43
+ self.cycles = cycles or 1
44
+ self.chat_memory = chat_memory or ConversationBufferMemory(
45
+ memory_key="messages",
46
+ return_messages=True
47
+ )
48
+
49
+ @staticmethod
50
+ def concat_response(
51
+ inputs: Dict[str, str],
52
+ reference_system_prompt: Optional[str] = None
53
+ ):
54
+ reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
55
+
56
+ responses = ""
57
+ res_list = []
58
+ for i, out in enumerate(inputs.values()):
59
+ responses += f"{i}. {out}\n"
60
+ res_list.append(out)
61
+
62
+ formatted_prompt = reference_system_prompt.format(responses=responses)
63
+ return {
64
+ 'formatted_response': formatted_prompt,
65
+ 'responses': res_list
66
+ }
67
+
68
+ @classmethod
69
+ def from_config(
70
+ cls,
71
+ main_model: Optional[valid_model_names] = 'llama3-70b-8192',
72
+ system_prompt: Optional[str] = None,
73
+ cycles: int = 1,
74
+ layer_agent_config: Optional[Dict] = None,
75
+ reference_system_prompt: Optional[str] = None,
76
+ **main_model_kwargs
77
+ ):
78
+ reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
79
+ system_prompt = system_prompt or SYSTEM_PROMPT
80
+ layer_agent = MOAgent._configure_layer_agent(layer_agent_config)
81
+ main_agent = MOAgent._create_agent_from_system_prompt(
82
+ system_prompt=system_prompt,
83
+ model_name=main_model,
84
+ **main_model_kwargs
85
+ )
86
+ return cls(
87
+ main_agent=main_agent,
88
+ layer_agent=layer_agent,
89
+ reference_system_prompt=reference_system_prompt,
90
+ cycles=cycles
91
+ )
92
+
93
+ @staticmethod
94
+ def _configure_layer_agent(
95
+ layer_agent_config: Optional[Dict] = None
96
+ ) -> RunnableSerializable[Dict, Dict]:
97
+ if not layer_agent_config:
98
+ layer_agent_config = {
99
+ 'layer_agent_1' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'llama3-8b-8192'},
100
+ 'layer_agent_2' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'gemma-7b-it'},
101
+ 'layer_agent_3' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'mixtral-8x7b-32768'}
102
+ }
103
+
104
+ parallel_chain_map = dict()
105
+ for key, value in layer_agent_config.items():
106
+ chain = MOAgent._create_agent_from_system_prompt(
107
+ system_prompt=value.pop("system_prompt", SYSTEM_PROMPT),
108
+ model_name=value.pop("model_name", 'llama3-8b-8192'),
109
+ **value
110
+ )
111
+ parallel_chain_map[key] = RunnablePassthrough() | chain
112
+
113
+ chain = parallel_chain_map | RunnableLambda(MOAgent.concat_response)
114
+ return chain
115
+
116
+ @staticmethod
117
+ def _create_agent_from_system_prompt(
118
+ system_prompt: str = SYSTEM_PROMPT,
119
+ model_name: str = "llama3-8b-8192",
120
+ **llm_kwargs
121
+ ) -> RunnableSerializable[Dict, str]:
122
+ prompt = ChatPromptTemplate.from_messages([
123
+ ("system", system_prompt),
124
+ MessagesPlaceholder(variable_name="messages", optional=True),
125
+ ("human", "{input}")
126
+ ])
127
+
128
+ assert 'helper_response' in prompt.input_variables
129
+ llm = ChatGroq(model=model_name, **llm_kwargs)
130
+
131
+ chain = prompt | llm | StrOutputParser()
132
+ return chain
133
+
134
+ def chat(
135
+ self,
136
+ input: str,
137
+ messages: Optional[List[BaseMessage]] = None,
138
+ cycles: Optional[int] = None,
139
+ save: bool = True,
140
+ output_format: Literal['string', 'json'] = 'string'
141
+ ) -> Generator[str | ResponseChunk, None, None]:
142
+ cycles = cycles or self.cycles
143
+ llm_inp = {
144
+ 'input': input,
145
+ 'messages': messages or self.chat_memory.load_memory_variables({})['messages'],
146
+ 'helper_response': ""
147
+ }
148
+ for cyc in range(cycles):
149
+ layer_output = self.layer_agent.invoke(llm_inp)
150
+ l_frm_resp = layer_output['formatted_response']
151
+ l_resps = layer_output['responses']
152
+
153
+ llm_inp = {
154
+ 'input': input,
155
+ 'messages': self.chat_memory.load_memory_variables({})['messages'],
156
+ 'helper_response': l_frm_resp
157
+ }
158
+
159
+ if output_format == 'json':
160
+ for l_out in l_resps:
161
+ yield ResponseChunk(
162
+ delta=l_out,
163
+ response_type='intermediate',
164
+ metadata={'layer': cyc + 1}
165
+ )
166
+
167
+ stream = self.main_agent.stream(llm_inp)
168
+ response = ""
169
+ for chunk in stream:
170
+ if output_format == 'json':
171
+ yield ResponseChunk(
172
+ delta=chunk,
173
+ response_type='output',
174
+ metadata={}
175
+ )
176
+ else:
177
+ yield chunk
178
+ response += chunk
179
+
180
+ if save:
181
+ self.chat_memory.save_context({'input': input}, {'output': response})
moa/agent/prompts.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SYSTEM_PROMPT = """\
2
+ You are a personal assistant that is helpful.
3
+
4
+ {helper_response}\
5
+ """
6
+
7
+ REFERENCE_SYSTEM_PROMPT = """\
8
+ You have been provided with a set of responses from various open-source models to the latest user query.
9
+ Your task is to synthesize these responses into a single, high-quality response.
10
+ It is crucial to critically evaluate the information provided in these responses, recognizing that some of it may be biased or incorrect.
11
+ Your response should not simply replicate the given answers but should offer a refined, accurate, and comprehensive reply to the instruction.
12
+ Ensure your response is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.
13
+ Responses from models:
14
+ {responses}
15
+ """
moa/main.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from agent import MOAgent
2
+
3
+ # Configure agent
4
+ layer_agent_config = {
5
+ 'layer_agent_1' : {'system_prompt': "Think through your response with step by step {helper_response}", 'model_name': 'llama3-8b-8192'},
6
+ 'layer_agent_2' : {'system_prompt': "Respond with a thought and then your response to the question {helper_response}", 'model_name': 'gemma-7b-it'},
7
+ 'layer_agent_3' : {'model_name': 'llama3-8b-8192'},
8
+ 'layer_agent_4' : {'model_name': 'gemma-7b-it'},
9
+ 'layer_agent_5' : {'model_name': 'llama3-8b-8192'},
10
+ }
11
+ agent = MOAgent.from_config(
12
+ main_model='mixtral-8x7b-32768',
13
+ layer_agent_config=layer_agent_config
14
+ )
15
+
16
+ while True:
17
+ inp = input("\nAsk a question: ")
18
+ stream = agent.chat(inp, output_format='json')
19
+ for chunk in stream:
20
+ print(chunk)