File size: 7,258 Bytes
946af90
d871e31
 
 
 
 
 
 
 
 
 
4ee77f6
52f9dcb
 
 
 
d871e31
0afdd3b
d871e31
52f9dcb
 
 
 
d1fe61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0afdd3b
52f9dcb
 
 
d404e12
0afdd3b
52f9dcb
 
 
 
0afdd3b
52f9dcb
e60d73d
52f9dcb
 
 
 
0afdd3b
e60d73d
 
0afdd3b
 
 
52f9dcb
e60d73d
52f9dcb
 
 
 
0afdd3b
 
 
 
 
 
52f9dcb
e60d73d
52f9dcb
 
 
 
0afdd3b
 
 
 
 
52f9dcb
 
 
 
 
 
 
 
 
 
 
 
e60d73d
0afdd3b
 
52f9dcb
 
 
 
 
ac04eb4
52f9dcb
 
0afdd3b
 
 
52f9dcb
 
 
 
 
 
 
0afdd3b
 
 
52f9dcb
 
 
 
0afdd3b
 
52f9dcb
e60d73d
0afdd3b
 
52f9dcb
 
e60d73d
 
 
52f9dcb
 
 
 
 
e60d73d
52f9dcb
 
 
 
 
 
 
e60d73d
 
 
28d1bc0
 
 
e60d73d
 
28d1bc0
 
52f9dcb
d6c1fc7
146fdcf
d6c1fc7
 
 
28d1bc0
d6c1fc7
 
 
 
 
 
 
 
 
 
 
28d1bc0
d6c1fc7
 
 
 
 
 
 
 
28d1bc0
 
 
 
 
 
d6c1fc7
 
28d1bc0
 
e60d73d
 
28d1bc0
19a3440
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#to-do: generate graph
import streamlit as st
from crewai import Agent, Task, Crew
import os
from langchain_groq import ChatGroq
from fpdf import FPDF
import pandas as pd
import plotly.express as px
import time

# Title and Sidebar
st.title("πŸ€– Multi-Agent Business Consultant")

st.sidebar.write(
    "This Business Consultant is built using Multi-Agent system. "
    "Use this application to generate actionable business insights and data-driven analysis!"
)

# User Inputs
business = st.text_input('Enter The Required Business Search Area', value="Artificial Intelligence")
stakeholder = st.text_input('Enter The Stakeholder Team', value="Executives")

# Optional Customization
st.sidebar.subheader("Agent Customization")

# Display customization section in a collapsible expander
with st.sidebar.expander("Customize Agent Goals", expanded=False):
    enable_customization = st.checkbox("Enable Custom Goals")
    if enable_customization:
        planner_goal = st.text_area(
            "Planner Goal",
            value="Develop a comprehensive plan focusing on market trends and strategies."
        )
        writer_goal = st.text_area(
            "Writer Goal",
            value="Craft engaging and actionable content based on analysis."
        )
        analyst_goal = st.text_area(
            "Analyst Goal",
            value="Perform advanced statistical analysis and generate key insights."
        )
    else:
        planner_goal = "Develop a comprehensive plan focusing on market trends and strategies."
        writer_goal = "Craft engaging and actionable content based on analysis."
        analyst_goal = "Perform advanced statistical analysis and generate key insights."


#=================
# LLM Object
#=================
llm = ChatGroq(groq_api_key=os.getenv("GROQ_API_KEY"), model="groq/llama-3.3-70b-versatile")

#=================
# Crew Agents
#=================

planner = Agent(
    role="Business Consultant",
    goal=planner_goal,
    backstory=(
        "You're tasked with providing insights about {topic} to the stakeholder: {stakeholder}. "
        "Your work will form the foundation for the Business Writer and Data Analyst."
    ),
    allow_delegation=False,
    verbose=True,
    llm=llm
)

writer = Agent(
    role="Business Writer",
    goal=writer_goal,
    backstory=(
        "You will write a professional insights document about {topic}, "
        "based on the Business Consultant's plan and the Data Analyst's results."
    ),
    allow_delegation=False,
    verbose=True,
    llm=llm
)

analyst = Agent(
    role="Data Analyst",
    goal=analyst_goal,
    backstory=(
        "You will perform statistical analysis on {topic}, based on the Business Consultant's plan. "
        "Your analysis will support the Business Writer's final document for {stakeholder}."
    ),
    allow_delegation=False,
    verbose=True,
    llm=llm
)

#=================
# Crew Tasks
#=================

plan = Task(
    description=(
        "1. Research trends, key players, and noteworthy news for {topic}.\n"
        "2. Provide structured insights and actionable recommendations.\n"
        "3. Suggest strategies for dealing with international operators.\n"
        "4. Limit content to 500 words."
    ),
    expected_output="A comprehensive consultancy document with insights and recommendations.",
    agent=planner
)

write = Task(
    description=(
        "1. Use the Business Consultant's plan to write a professional document for {topic}.\n"
        "2. Structure the content with engaging sections and visuals.\n"
        "3. Ensure alignment with the stakeholder's goals.\n"
        "4. Limit the document to 400 words."
    ),
    expected_output="A professional document tailored for {stakeholder}.",
    agent=writer
)

analyse = Task(
    description=(
        "1. Perform statistical analysis to provide actionable insights for {topic}.\n"
        "2. Collaborate with the Business Consultant and Writer to align on key metrics.\n"
        "3. Present findings in a format suitable for inclusion in the final document."
    ),
    expected_output="A data-driven analysis tailored for {stakeholder}.",
    agent=analyst
)

#=================
# Execution
#=================

crew = Crew(
    agents=[planner, analyst, writer],
    tasks=[plan, analyse, write],
    verbose=True
)

def generate_pdf_report(result):
    """Generate a professional PDF report from the Crew output."""
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    pdf.set_auto_page_break(auto=True, margin=15)

    # Title
    pdf.set_font("Arial", size=16, style="B")
    pdf.cell(200, 10, txt="AI Business Consultant Report", ln=True, align="C")
    pdf.ln(10)

    # Content
    pdf.set_font("Arial", size=12)
    pdf.multi_cell(0, 10, txt=result)

    # Save PDF
    report_path = "Business_Insights_Report.pdf"
    pdf.output(report_path)
    return report_path


if st.button("Generate Insights"):
    with st.spinner('Processing...'):
        try:
            start_time = time.time()
            results = crew.kickoff(inputs={"topic": business, "stakeholder": stakeholder})
            elapsed_time = time.time() - start_time

            # Display Final Report (Writer's Output)
            st.markdown("### Final Report:")
            writer_output = getattr(results.tasks_output[2], "raw", "No details available.")
            if writer_output:
                st.write(writer_output)
            else:
                st.warning("No final report available.")

            # Option for Detailed Insights
            with st.expander("Explore Detailed Insights"):
                tab1, tab2 = st.tabs(["Planner's Insights", "Analyst's Analysis"])

                # Planner's Output
                with tab1:
                    st.markdown("### Planner's Insights")
                    planner_output = getattr(results.tasks_output[0], "raw", "No details available.")
                    st.write(planner_output)

                # Analyst's Output
                with tab2:
                    st.markdown("### Analyst's Analysis")
                    analyst_output = getattr(results.tasks_output[1], "raw", "No details available.")
                    st.write(analyst_output)

            # Display Token Usage and Execution Time
            st.success(f"Analysis completed in {elapsed_time:.2f} seconds.")
            token_usage = getattr(results, "token_usage", None)
            if token_usage:
                st.markdown("#### Token Usage")
                st.json(token_usage)

            # Generate PDF Report
            if writer_output:
                report_path = generate_pdf_report(writer_output)
                with open(report_path, "rb") as report_file:
                    st.download_button("Download Report", data=report_file, file_name="Business_Report.pdf")

        except Exception as e:
            st.error(f"An error occurred during execution: {e}")


# Add reference and credits in the sidebar
st.sidebar.markdown("---")
st.sidebar.markdown("### Reference:")
st.sidebar.markdown("[Multi-Agent Business Consultant - Hanan Tabak](https://medium.com/@hanan.tabak/user-friendly-open-source-multi-agent-ai-business-consultant-on-crewai-and-streamlit-0f972feb1b74)")