DrishtiSharma's picture
Update app.py
33eef8d verified
import os
import spaces
import gradio as gr
import torch
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
from pdf2image import convert_from_path
from PIL import Image, ImageEnhance
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import faiss # FAISS for fast retrieval
import numpy as np
# Initialize FAISS index for fast similarity search (used only if selected)
embedding_dim = 448
faiss_index = faiss.IndexFlatL2(embedding_dim)
stored_images = [] # To store images associated with embeddings for retrieval if using FAISS
def preprocess_image(image_path, grayscale=False):
"""Apply optional grayscale and other enhancements to images."""
img = Image.open(image_path)
if grayscale:
img = img.convert("L") # Apply grayscale if selected
enhancer = ImageEnhance.Sharpness(img)
img = enhancer.enhance(2.0) # Sharpen
return img
@spaces.GPU
def model_inference(images, text, grayscale=False):
"""Qwen2VL-based inference function with optional grayscale processing."""
images = [
{
"type": "image",
"image": preprocess_image(image[0], grayscale=grayscale),
"resized_height": 1344,
"resized_width": 1344,
}
for image in images
]
images.append({"type": "text", "text": text})
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda:0")
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
messages = [{"role": "user", "content": images}]
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(messages)
inputs = processor(
text=[text_input], images=image_inputs, padding=True, return_tensors="pt"
).to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=512)
output_text = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
del model, processor
torch.cuda.empty_cache()
return output_text[0]
@spaces.GPU
def search(query: str, ds, images, k, retrieval_method="CustomEvaluator"):
"""Search function with option to choose between CustomEvaluator and FAISS for retrieval."""
model_name = "vidore/colpali-v1.2"
token = os.environ.get("HF_TOKEN")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = ColPali.from_pretrained(
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token=token
).eval().to(device)
processor = AutoProcessor.from_pretrained(model_name, token=token)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
# Process the query to obtain embeddings
batch_query = process_queries(processor, [query], mock_image)
embeddings_query = model(**{k: v.to(device) for k, v in batch_query.items()})
query_embedding = embeddings_query[0].cpu().numpy()
if retrieval_method == "FAISS":
# Use FAISS for efficient retrieval
distances, indices = faiss_index.search(np.array([query_embedding]), k)
results = [stored_images[idx] for idx in indices[0]]
else:
# Use CustomEvaluator for retrieval
qs = [query_embedding]
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
results = [images[idx] for idx in top_k_indices]
del model, processor
torch.cuda.empty_cache()
return results
def index(files, ds):
"""Convert and index PDF files."""
images = convert_files(files)
return index_gpu(images, ds)
def convert_files(files):
"""Convert PDF files to images."""
images = []
for f in files:
images.extend(convert_from_path(f, thread_count=4))
if len(images) >= 150:
raise gr.Error("The number of images in the dataset should be less than 150.")
return images
@spaces.GPU
def index_gpu(images, ds):
"""Index documents using FAISS or store in dataset for CustomEvaluator."""
global stored_images
model_name = "vidore/colpali-v1.2"
token = os.environ.get("HF_TOKEN")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = ColPali.from_pretrained(
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token=token
).eval().to(device)
processor = AutoProcessor.from_pretrained(model_name, token=token)
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
dataloader = DataLoader(images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x))
all_embeddings = []
for batch in tqdm(dataloader):
with torch.no_grad():
batch = {k: v.to(device) for k, v in batch.items()}
embeddings_doc = model(**batch)
all_embeddings.extend(embeddings_doc.cpu().numpy())
# Store embeddings in FAISS index and dataset for respective retrieval options
embeddings = np.array(all_embeddings)
faiss_index.add(embeddings) # Add to FAISS index
ds.extend(list(torch.unbind(torch.tensor(embeddings)))) # Extend original ds for CustomEvaluator
stored_images.extend(images) # Store images to link with FAISS indices
del model, processor
torch.cuda.empty_cache()
return f"Indexed {len(images)} pages"
def get_example():
return [
[["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "Quels sont les 4 axes majeurs des achats?"],
[["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "Quelles sont les actions entreprise en Afrique du Sud?"],
[["RAPPORT_DEVELOPPEMENT_DURABLE_2019.pdf"], "fais moi un tableau markdown de la rΓ©partition homme femme"],
]
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# πŸ“ ColPali + Qwen2VL 7B: Document Retrieval & Analysis App")
# Section 1: File Upload
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Step 1: Upload Your Documents πŸ“„")
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDF Documents")
grayscale_option = gr.Checkbox(label="Convert images to grayscale πŸ–€", value=False)
convert_button = gr.Button("πŸ”„ Index Documents", variant="secondary")
message = gr.Textbox("No files uploaded yet", label="Status", interactive=False)
embeds = gr.State(value=[])
imgs = gr.State(value=[])
img_chunk = gr.State(value=[])
# Section 2: Search Options
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("## Step 2: Search the Indexed Documents πŸ”")
query = gr.Textbox(placeholder="Enter your query here", label="Query", lines=2)
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Results", value=1)
retrieval_method = gr.Dropdown(
choices=["CustomEvaluator", "FAISS"],
label="Choose Retrieval Method πŸ”€",
value="CustomEvaluator"
)
search_button = gr.Button("πŸ” Search", variant="primary")
# Displaying Examples
with gr.Row():
gr.Markdown("## πŸ’‘ Example Queries")
gr.Examples(examples=get_example(), inputs=[file, query], label="Try These Examples")
# Output Gallery for Search Results
output_gallery = gr.Gallery(label="πŸ“‚ Retrieved Documents", height=600)
# Section 3: Answer Retrieval
with gr.Row():
gr.Markdown("## Step 3: Generate Answers with Qwen2-VL 🧠")
answer_button = gr.Button("πŸ’¬ Get Answer", variant="primary")
output = gr.Markdown(label="Output")
# Define interactions
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
search_button.click(search, inputs=[query, embeds, imgs, k, retrieval_method], outputs=[output_gallery])
answer_button.click(model_inference, inputs=[output_gallery, query, grayscale_option], outputs=output)
if __name__ == "__main__":
demo.queue(max_size=10).launch(share=True)