DylanonWic commited on
Commit
af5c38f
·
verified ·
1 Parent(s): 89794a5

Upload 17 files

Browse files
Files changed (4) hide show
  1. chatbot_multiagent.ipynb +74 -91
  2. chatbot_multiagent.py +27 -29
  3. prompt.py +3 -3
  4. tools.py +2 -2
chatbot_multiagent.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -15,20 +15,21 @@
15
  },
16
  {
17
  "cell_type": "code",
18
- "execution_count": 2,
19
  "metadata": {},
20
- "outputs": [
21
- {
22
- "name": "stderr",
23
- "output_type": "stream",
24
- "text": [
25
- "/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:141: LangChainDeprecationWarning: The class `ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import ChatOpenAI`.\n",
26
- " warn_deprecated(\n",
27
- "/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:141: LangChainDeprecationWarning: The function `format_tool_to_openai_function` was deprecated in LangChain 0.1.16 and will be removed in 1.0. Use langchain_core.utils.function_calling.convert_to_openai_function() instead.\n",
28
- " warn_deprecated(\n"
29
- ]
30
- }
31
- ],
 
32
  "source": [
33
  "from langchain_core.messages import HumanMessage\n",
34
  "import operator\n",
@@ -36,6 +37,7 @@
36
  "\n",
37
  "# for llm model\n",
38
  "from langchain_openai import ChatOpenAI\n",
 
39
  "from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
40
  "from tools import find_place_from_text, nearby_search\n",
41
  "from typing import Dict, List, Tuple, Annotated, Sequence, TypedDict\n",
@@ -43,7 +45,6 @@
43
  " AgentExecutor,\n",
44
  ")\n",
45
  "from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
46
- "from langchain_community.chat_models import ChatOpenAI\n",
47
  "from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
48
  "from langchain_core.messages import (\n",
49
  " AIMessage, \n",
@@ -67,6 +68,8 @@
67
  "def format_docs(docs):\n",
68
  " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
69
  "\n",
 
 
70
  "# Specify the pattern\n",
71
  "file_pattern = \"document/*.csv\"\n",
72
  "file_paths = tuple(glob.glob(file_pattern))\n",
@@ -88,8 +91,8 @@
88
  "# Retrieve and generate using the relevant snippets of the blog.\n",
89
  "retriever = vectorstore.as_retriever()\n",
90
  "\n",
91
- "## tools and LLM\n",
92
  "\n",
 
93
  "retriever_tool = Tool(\n",
94
  " name=\"population, community and household expenditures data\",\n",
95
  " func=retriever.get_relevant_documents,\n",
@@ -97,7 +100,8 @@
97
  ")\n",
98
  "\n",
99
  "# Bind the tools to the model\n",
100
- "tools = [retriever_tool, find_place_from_text, nearby_search] # Include both tools if needed\n",
 
101
  "\n",
102
  "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n",
103
  "\n",
@@ -123,7 +127,7 @@
123
  " prompt = prompt.partial(tool_names=\", \".join([tool.name for tool in tools]))\n",
124
  " llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])\n",
125
  " # return prompt | llm.bind_tools(tools)\n",
126
- " agent = prompt | llm\n",
127
  " return agent\n",
128
  "\n",
129
  "\n",
@@ -225,8 +229,12 @@
225
  " # the tool calling node does not, meaning\n",
226
  " # this edge will route back to the original agent\n",
227
  " # who invoked the tool\n",
228
- " lambda x: \"data collector\",\n",
229
- " {\"data collector\":\"data collector\"},\n",
 
 
 
 
230
  ")\n",
231
  "workflow.add_edge(START, \"analyst\")\n",
232
  "graph = workflow.compile()"
@@ -234,7 +242,7 @@
234
  },
235
  {
236
  "cell_type": "code",
237
- "execution_count": 3,
238
  "metadata": {},
239
  "outputs": [],
240
  "source": [
@@ -249,83 +257,57 @@
249
  },
250
  {
251
  "cell_type": "code",
252
- "execution_count": 4,
253
  "metadata": {},
254
  "outputs": [
255
  {
256
  "name": "stdout",
257
  "output_type": "stream",
258
  "text": [
259
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
260
- "Name: analyst\n",
261
- "\n",
262
- "เพื่อวิเค��าะห์การเปิดร้านกาแฟใกล้มาบุญครอง ฉันจะต้องรวบรวมข้อมูลเกี่ยวกับพื้นที่นี้ รวมถึงข้อมูลประชากรและการใช้จ่ายของชุมชนในบริเวณนั้น\n",
263
- "\n",
264
- "ข้อมูลที่ต้องการคือ:\n",
265
- "- สถานที่: มาบุญครอง\n",
266
- "- ประเภทสถานที่: ร้านกาแฟ\n",
267
- "\n",
268
- "ฉันจะส่งข้อมูลนี้ไปยังผู้เก็บข้อมูลเพื่อรวบรวมข้อมูลที่เกี่ยวข้องต่อไป\n",
269
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
270
- "Name: data collector\n",
271
- "\n",
272
- "I will now gather the necessary data regarding coffee shops near Maboonkrong. \n",
273
- "\n",
274
- "First, I will find the location details for Maboonkrong.\n",
275
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
276
- "Name: reporter\n",
277
- "\n",
278
- "Finding the location details for Maboonkrong.\n",
279
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
280
- "Name: data collector\n",
281
- "\n",
282
- "I have found the location details for Maboonkrong. Now, I will proceed to search for nearby coffee shops and gather the required data.\n",
283
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
284
- "Name: reporter\n",
285
- "\n",
286
- "Searching for nearby coffee shops around Maboonkrong.\n",
287
- "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
288
- "Name: data collector\n",
289
- "\n",
290
- "I have gathered the following data regarding coffee shops near Maboonkrong:\n",
291
- "\n",
292
- "1. **Number of Competitors**: 5\n",
293
- "2. **List of Competitors Nearby**:\n",
294
- " - **Coffee Shop A**\n",
295
- " - Address: 123 Maboonkrong Rd, Bangkok\n",
296
- " - Opening Hours: 8 AM - 10 PM\n",
297
- " - Rating: 4.5\n",
298
- " - **Coffee Shop B**\n",
299
- " - Address: 456 Maboonkrong Rd, Bangkok\n",
300
- " - Opening Hours: 7 AM - 9 PM\n",
301
- " - Rating: 4.0\n",
302
- " - **Coffee Shop C**\n",
303
- " - Address: 789 Maboonkrong Rd, Bangkok\n",
304
- " - Opening Hours: 9 AM - 11 PM\n",
305
- " - Rating: 4.2\n",
306
- " - **Coffee Shop D**\n",
307
- " - Address: 321 Maboonkrong Rd, Bangkok\n",
308
- " - Opening Hours: 8 AM - 8 PM\n",
309
- " - Rating: 4.3\n",
310
- " - **Coffee Shop E**\n",
311
- " - Address: 654 Maboonkrong Rd, Bangkok\n",
312
- " - Opening Hours: 10 AM - 10 PM\n",
313
- " - Rating: 4.1\n",
314
- "\n",
315
- "3. **Products Sold by Competitors**: Coffee, pastries, sandwiches, and snacks.\n",
316
- "4. **Number of Population Nearby**: Approximately 50,000\n",
317
- "5. **Community Type**: Urban\n",
318
- "6. **Household Expenditures**: Average household expenditure on food and beverages is around $300 per month.\n",
319
- "7. **Population Data**: The population density in the area is high, with a mix of residents and tourists.\n",
320
- "\n",
321
- "This data should provide a comprehensive overview for analyzing the potential of opening a coffee shop near Maboonkrong. \n",
322
- "\n",
323
- "FINAL ANSWER\n"
324
  ]
325
  }
326
  ],
327
  "source": [
328
- "question = \"วิเคราะห์การเปิดร้านกาแฟใกล้มาบุญครอง\"\n",
329
  "\n",
330
  "graph = workflow.compile()\n",
331
  "\n",
@@ -341,13 +323,14 @@
341
  " {\"recursion_limit\": 20},\n",
342
  ")\n",
343
  "for s in events:\n",
344
- " a = list(s.items())[0]\n",
345
- " a[1]['messages'][0].pretty_print()"
 
346
  ]
347
  },
348
  {
349
  "cell_type": "code",
350
- "execution_count": 5,
351
  "metadata": {},
352
  "outputs": [],
353
  "source": [
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 7,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
15
  },
16
  {
17
  "cell_type": "code",
18
+ "execution_count": 8,
19
  "metadata": {},
20
+ "outputs": [],
21
+ "source": [
22
+ "from langchain.globals import set_debug, set_verbose\n",
23
+ "\n",
24
+ "set_verbose(True)\n",
25
+ "set_debug(False)"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 9,
31
+ "metadata": {},
32
+ "outputs": [],
33
  "source": [
34
  "from langchain_core.messages import HumanMessage\n",
35
  "import operator\n",
 
37
  "\n",
38
  "# for llm model\n",
39
  "from langchain_openai import ChatOpenAI\n",
40
+ "# from langchain_community.chat_models import ChatOpenAI\n",
41
  "from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
42
  "from tools import find_place_from_text, nearby_search\n",
43
  "from typing import Dict, List, Tuple, Annotated, Sequence, TypedDict\n",
 
45
  " AgentExecutor,\n",
46
  ")\n",
47
  "from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
 
48
  "from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
49
  "from langchain_core.messages import (\n",
50
  " AIMessage, \n",
 
68
  "def format_docs(docs):\n",
69
  " return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
70
  "\n",
71
+ "\n",
72
+ "## Document csv\n",
73
  "# Specify the pattern\n",
74
  "file_pattern = \"document/*.csv\"\n",
75
  "file_paths = tuple(glob.glob(file_pattern))\n",
 
91
  "# Retrieve and generate using the relevant snippets of the blog.\n",
92
  "retriever = vectorstore.as_retriever()\n",
93
  "\n",
 
94
  "\n",
95
+ "## tools and LLM\n",
96
  "retriever_tool = Tool(\n",
97
  " name=\"population, community and household expenditures data\",\n",
98
  " func=retriever.get_relevant_documents,\n",
 
100
  ")\n",
101
  "\n",
102
  "# Bind the tools to the model\n",
103
+ "# tools = [retriever_tool, find_place_from_text, nearby_search] # Include both tools if needed\n",
104
+ "tools = [find_place_from_text, nearby_search]\n",
105
  "\n",
106
  "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n",
107
  "\n",
 
127
  " prompt = prompt.partial(tool_names=\", \".join([tool.name for tool in tools]))\n",
128
  " llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])\n",
129
  " # return prompt | llm.bind_tools(tools)\n",
130
+ " agent = prompt | llm_with_tools\n",
131
  " return agent\n",
132
  "\n",
133
  "\n",
 
229
  " # the tool calling node does not, meaning\n",
230
  " # this edge will route back to the original agent\n",
231
  " # who invoked the tool\n",
232
+ " lambda x: x[\"sender\"],\n",
233
+ " {\n",
234
+ " \"data collector\":\"data collector\",\n",
235
+ " \"analyst\":\"analyst\",\n",
236
+ " \"reporter\":\"reporter\",\n",
237
+ " },\n",
238
  ")\n",
239
  "workflow.add_edge(START, \"analyst\")\n",
240
  "graph = workflow.compile()"
 
242
  },
243
  {
244
  "cell_type": "code",
245
+ "execution_count": 10,
246
  "metadata": {},
247
  "outputs": [],
248
  "source": [
 
257
  },
258
  {
259
  "cell_type": "code",
260
+ "execution_count": 11,
261
  "metadata": {},
262
  "outputs": [
263
  {
264
  "name": "stdout",
265
  "output_type": "stream",
266
  "text": [
267
+ "*********name: analyst\n",
268
+ "{'analyst': {'messages': [AIMessage(content=\"To assist with the feasibility analysis for a bookstore near New York, I will extract the relevant information:\\n\\n- **Location**: New York\\n- **Keyword**: Bookstore\\n\\nI will now instruct the Data Collector to gather relevant data based on this input. \\n\\nLet's proceed with the data collection.\", additional_kwargs={'function_call': {'arguments': '{\"input_dict\":{\"keyword\":\"bookstore\",\"location_name\":\"New York\",\"radius\":5000,\"place_type\":\"bookstore\"}}', 'name': 'nearby_search'}, 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 98, 'prompt_tokens': 335, 'total_tokens': 433}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'function_call', 'logprobs': None}, name='analyst', id='run-f7896776-cbec-4359-93ca-71d0f7fedeb7-0', usage_metadata={'input_tokens': 335, 'output_tokens': 98, 'total_tokens': 433})], 'sender': 'analyst'}}\n",
269
+ "*********name: data collector\n",
270
+ "{'data collector': {'messages': [AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\"location\":\"New York\"}', 'name': 'find_place_from_text'}, 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 17, 'prompt_tokens': 592, 'total_tokens': 609}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'function_call', 'logprobs': None}, name='data collector', id='run-28ebbebf-faad-44a5-b972-29b6f8bc3455-0', usage_metadata={'input_tokens': 592, 'output_tokens': 17, 'total_tokens': 609})], 'sender': 'data collector'}}\n",
271
+ "*********name: reporter\n"
272
+ ]
273
+ },
274
+ {
275
+ "ename": "BadRequestError",
276
+ "evalue": "Error code: 400 - {'error': {'message': \"Invalid 'messages[3].name': string does not match pattern. Expected a string that matches the pattern '^[a-zA-Z0-9_-]+$'.\", 'type': 'invalid_request_error', 'param': 'messages[3].name', 'code': 'invalid_value'}}",
277
+ "output_type": "error",
278
+ "traceback": [
279
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
280
+ "\u001b[0;31mBadRequestError\u001b[0m Traceback (most recent call last)",
281
+ "Cell \u001b[0;32mIn[11], line 16\u001b[0m\n\u001b[1;32m 3\u001b[0m graph \u001b[38;5;241m=\u001b[39m workflow\u001b[38;5;241m.\u001b[39mcompile()\n\u001b[1;32m 5\u001b[0m events \u001b[38;5;241m=\u001b[39m graph\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m 6\u001b[0m {\n\u001b[1;32m 7\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 14\u001b[0m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrecursion_limit\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m20\u001b[39m},\n\u001b[1;32m 15\u001b[0m )\n\u001b[0;32m---> 16\u001b[0m \u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mevents\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 17\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mprint\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43ms\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# a = list(s.items())[0]\u001b[39;00m\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m# a[1]['messages'][0].pretty_print()\u001b[39;00m\n",
282
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langgraph/pregel/__init__.py:1018\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug)\u001b[0m\n\u001b[1;32m 1015\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m fut, task\n\u001b[1;32m 1017\u001b[0m \u001b[38;5;66;03m# panic on failure or timeout\u001b[39;00m\n\u001b[0;32m-> 1018\u001b[0m \u001b[43m_panic_or_proceed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minflight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mloop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1019\u001b[0m \u001b[38;5;66;03m# don't keep futures around in memory longer than needed\u001b[39;00m\n\u001b[1;32m 1020\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m done, inflight, futures\n",
283
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langgraph/pregel/__init__.py:1419\u001b[0m, in \u001b[0;36m_panic_or_proceed\u001b[0;34m(done, inflight, step, timeout_exc_cls)\u001b[0m\n\u001b[1;32m 1417\u001b[0m inflight\u001b[38;5;241m.\u001b[39mpop()\u001b[38;5;241m.\u001b[39mcancel()\n\u001b[1;32m 1418\u001b[0m \u001b[38;5;66;03m# raise the exception\u001b[39;00m\n\u001b[0;32m-> 1419\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 1421\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inflight:\n\u001b[1;32m 1422\u001b[0m \u001b[38;5;66;03m# if we got here means we timed out\u001b[39;00m\n\u001b[1;32m 1423\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m inflight:\n\u001b[1;32m 1424\u001b[0m \u001b[38;5;66;03m# cancel all pending tasks\u001b[39;00m\n",
284
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langgraph/pregel/executor.py:60\u001b[0m, in \u001b[0;36mBackgroundExecutor.done\u001b[0;34m(self, task)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdone\u001b[39m(\u001b[38;5;28mself\u001b[39m, task: concurrent\u001b[38;5;241m.\u001b[39mfutures\u001b[38;5;241m.\u001b[39mFuture) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 60\u001b[0m \u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m GraphInterrupt:\n\u001b[1;32m 62\u001b[0m \u001b[38;5;66;03m# This exception is an interruption signal, not an error\u001b[39;00m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;66;03m# so we don't want to re-raise it on exit\u001b[39;00m\n\u001b[1;32m 64\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtasks\u001b[38;5;241m.\u001b[39mpop(task)\n",
285
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/concurrent/futures/_base.py:449\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;241m==\u001b[39m FINISHED:\n\u001b[0;32m--> 449\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_condition\u001b[38;5;241m.\u001b[39mwait(timeout)\n\u001b[1;32m 453\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_state \u001b[38;5;129;01min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n",
286
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/concurrent/futures/_base.py:401\u001b[0m, in \u001b[0;36mFuture.__get_result\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception:\n\u001b[1;32m 400\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 401\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception\n\u001b[1;32m 402\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 403\u001b[0m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
287
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/concurrent/futures/thread.py:58\u001b[0m, in \u001b[0;36m_WorkItem.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 58\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 60\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuture\u001b[38;5;241m.\u001b[39mset_exception(exc)\n",
288
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langgraph/pregel/retry.py:25\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy)\u001b[0m\n\u001b[1;32m 23\u001b[0m task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m 24\u001b[0m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 25\u001b[0m \u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minput\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;66;03m# if successful, end\u001b[39;00m\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
289
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/runnables/base.py:2876\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2874\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, config)\n\u001b[1;32m 2875\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m-> 2876\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2877\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 2878\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(step\u001b[38;5;241m.\u001b[39minvoke, \u001b[38;5;28minput\u001b[39m, config)\n",
290
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langgraph/utils.py:102\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m accepts_config(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc):\n\u001b[1;32m 101\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m config\n\u001b[0;32m--> 102\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
291
+ "Cell \u001b[0;32mIn[9], line 112\u001b[0m, in \u001b[0;36magent_node\u001b[0;34m(state, agent, name)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21magent_node\u001b[39m(state, agent, name):\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m*********name: \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m+\u001b[39m name)\n\u001b[0;32m--> 112\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;66;03m# We convert the agent output into a format that is suitable to append to the global state\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(result, ToolMessage):\n",
292
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/runnables/base.py:2878\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2876\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(step\u001b[38;5;241m.\u001b[39minvoke, \u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2877\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2878\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(step\u001b[38;5;241m.\u001b[39minvoke, \u001b[38;5;28minput\u001b[39m, config)\n\u001b[1;32m 2879\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2880\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
293
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/runnables/base.py:5094\u001b[0m, in \u001b[0;36mRunnableBindingBase.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 5088\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 5089\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 5090\u001b[0m \u001b[38;5;28minput\u001b[39m: Input,\n\u001b[1;32m 5091\u001b[0m config: Optional[RunnableConfig] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 5092\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Optional[Any],\n\u001b[1;32m 5093\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Output:\n\u001b[0;32m-> 5094\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbound\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 5095\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5096\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_merge_configs\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5097\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m{\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5098\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
294
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:276\u001b[0m, in \u001b[0;36mBaseChatModel.invoke\u001b[0;34m(self, input, config, stop, **kwargs)\u001b[0m\n\u001b[1;32m 265\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m 266\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 267\u001b[0m \u001b[38;5;28minput\u001b[39m: LanguageModelInput,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 271\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 272\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m BaseMessage:\n\u001b[1;32m 273\u001b[0m config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[1;32m 274\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(\n\u001b[1;32m 275\u001b[0m ChatGeneration,\n\u001b[0;32m--> 276\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_prompt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 277\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_convert_input\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 278\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 279\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 280\u001b[0m \u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 281\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 282\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 283\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 285\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgenerations[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 286\u001b[0m )\u001b[38;5;241m.\u001b[39mmessage\n",
295
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:776\u001b[0m, in \u001b[0;36mBaseChatModel.generate_prompt\u001b[0;34m(self, prompts, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 768\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate_prompt\u001b[39m(\n\u001b[1;32m 769\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 770\u001b[0m prompts: List[PromptValue],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 773\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 774\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m 775\u001b[0m prompt_messages \u001b[38;5;241m=\u001b[39m [p\u001b[38;5;241m.\u001b[39mto_messages() \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m prompts]\n\u001b[0;32m--> 776\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt_messages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
296
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:633\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n\u001b[1;32m 632\u001b[0m run_managers[i]\u001b[38;5;241m.\u001b[39mon_llm_error(e, response\u001b[38;5;241m=\u001b[39mLLMResult(generations\u001b[38;5;241m=\u001b[39m[]))\n\u001b[0;32m--> 633\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 634\u001b[0m flattened_outputs \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 635\u001b[0m LLMResult(generations\u001b[38;5;241m=\u001b[39m[res\u001b[38;5;241m.\u001b[39mgenerations], llm_output\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mllm_output) \u001b[38;5;66;03m# type: ignore[list-item]\u001b[39;00m\n\u001b[1;32m 636\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results\n\u001b[1;32m 637\u001b[0m ]\n\u001b[1;32m 638\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_combine_llm_outputs([res\u001b[38;5;241m.\u001b[39mllm_output \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results])\n",
297
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:623\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 620\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(messages):\n\u001b[1;32m 621\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 622\u001b[0m results\u001b[38;5;241m.\u001b[39mappend(\n\u001b[0;32m--> 623\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 624\u001b[0m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 625\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 626\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_managers\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_managers\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 627\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 628\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 629\u001b[0m )\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n",
298
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:845\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 843\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 844\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inspect\u001b[38;5;241m.\u001b[39msignature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 845\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 846\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 847\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 848\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 849\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate(messages, stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
299
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain_openai/chat_models/base.py:635\u001b[0m, in \u001b[0;36mBaseChatOpenAI._generate\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 633\u001b[0m generation_info \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mheaders\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mdict\u001b[39m(raw_response\u001b[38;5;241m.\u001b[39mheaders)}\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 635\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mpayload\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 636\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_chat_result(response, generation_info)\n",
300
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openai/_utils/_utils.py:274\u001b[0m, in \u001b[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 272\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 274\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
301
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openai/resources/chat/completions.py:668\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, parallel_tool_calls, presence_penalty, response_format, seed, service_tier, stop, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 634\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 635\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 665\u001b[0m timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m 666\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[1;32m 667\u001b[0m validate_response_format(response_format)\n\u001b[0;32m--> 668\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 669\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 670\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 673\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 674\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 675\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 677\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 678\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 679\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 680\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 681\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mparallel_tool_calls\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 682\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 683\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 684\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 685\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mservice_tier\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 686\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 687\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 688\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 689\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 690\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 691\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 692\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 694\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 695\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 696\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 698\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 699\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 700\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 701\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 702\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 703\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 704\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
302
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openai/_base_client.py:1260\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1246\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1247\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1248\u001b[0m path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1255\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1256\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m 1257\u001b[0m opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m 1258\u001b[0m method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m 1259\u001b[0m )\n\u001b[0;32m-> 1260\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
303
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openai/_base_client.py:937\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 928\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m 929\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 930\u001b[0m cast_to: Type[ResponseT],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 935\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 936\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 937\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 938\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 939\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 940\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 941\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 942\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 943\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
304
+ "File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/openai/_base_client.py:1041\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1038\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 1040\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1041\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1043\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m 1044\u001b[0m cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m 1045\u001b[0m options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1049\u001b[0m retries_taken\u001b[38;5;241m=\u001b[39moptions\u001b[38;5;241m.\u001b[39mget_max_retries(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_retries) \u001b[38;5;241m-\u001b[39m retries,\n\u001b[1;32m 1050\u001b[0m )\n",
305
+ "\u001b[0;31mBadRequestError\u001b[0m: Error code: 400 - {'error': {'message': \"Invalid 'messages[3].name': string does not match pattern. Expected a string that matches the pattern '^[a-zA-Z0-9_-]+$'.\", 'type': 'invalid_request_error', 'param': 'messages[3].name', 'code': 'invalid_value'}}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
  ]
307
  }
308
  ],
309
  "source": [
310
+ "question = \"Feasibility analysis for a bookstore near New york\"\n",
311
  "\n",
312
  "graph = workflow.compile()\n",
313
  "\n",
 
323
  " {\"recursion_limit\": 20},\n",
324
  ")\n",
325
  "for s in events:\n",
326
+ " print(s)\n",
327
+ " # a = list(s.items())[0]\n",
328
+ " # a[1]['messages'][0].pretty_print()"
329
  ]
330
  },
331
  {
332
  "cell_type": "code",
333
+ "execution_count": null,
334
  "metadata": {},
335
  "outputs": [],
336
  "source": [
chatbot_multiagent.py CHANGED
@@ -5,6 +5,12 @@ import utils
5
  utils.load_env()
6
  os.environ['LANGCHAIN_TRACING_V2'] = "false"
7
 
 
 
 
 
 
 
8
  # %%
9
  from langchain_core.messages import HumanMessage
10
  import operator
@@ -12,6 +18,7 @@ import functools
12
 
13
  # for llm model
14
  from langchain_openai import ChatOpenAI
 
15
  from langchain.agents.format_scratchpad import format_to_openai_function_messages
16
  from tools import find_place_from_text, nearby_search
17
  from typing import Dict, List, Tuple, Annotated, Sequence, TypedDict
@@ -19,7 +26,6 @@ from langchain.agents import (
19
  AgentExecutor,
20
  )
21
  from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
22
- from langchain_community.chat_models import ChatOpenAI
23
  from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
24
  from langchain_core.messages import (
25
  AIMessage,
@@ -43,6 +49,8 @@ from langchain.tools import Tool
43
  def format_docs(docs):
44
  return "\n\n".join(doc.page_content for doc in docs)
45
 
 
 
46
  # Specify the pattern
47
  file_pattern = "document/*.csv"
48
  file_paths = tuple(glob.glob(file_pattern))
@@ -64,8 +72,8 @@ vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings
64
  # Retrieve and generate using the relevant snippets of the blog.
65
  retriever = vectorstore.as_retriever()
66
 
67
- ## tools and LLM
68
 
 
69
  retriever_tool = Tool(
70
  name="population, community and household expenditures data",
71
  func=retriever.get_relevant_documents,
@@ -73,7 +81,8 @@ retriever_tool = Tool(
73
  )
74
 
75
  # Bind the tools to the model
76
- tools = [retriever_tool, find_place_from_text, nearby_search] # Include both tools if needed
 
77
 
78
  llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.0)
79
 
@@ -99,7 +108,7 @@ def create_agent(llm, tools, system_message: str):
99
  prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
100
  llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
101
  # return prompt | llm.bind_tools(tools)
102
- agent = prompt | llm
103
  return agent
104
 
105
 
@@ -201,8 +210,12 @@ workflow.add_conditional_edges(
201
  # the tool calling node does not, meaning
202
  # this edge will route back to the original agent
203
  # who invoked the tool
204
- lambda x: "data collector",
205
- {"data collector":"data collector"},
 
 
 
 
206
  )
207
  workflow.add_edge(START, "analyst")
208
  graph = workflow.compile()
@@ -217,24 +230,7 @@ graph = workflow.compile()
217
  # pass
218
 
219
  # %%
220
- # question = "วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว"
221
 
222
- # graph = workflow.compile()
223
-
224
- # events = graph.stream(
225
- # {
226
- # "messages": [
227
- # HumanMessage(
228
- # question
229
- # )
230
- # ],
231
- # },
232
- # # Maximum number of steps to take in the graph
233
- # {"recursion_limit": 20},
234
- # )
235
- # for s in events:
236
- # a = list(s.items())[0]
237
- # a[1]['messages'][0].pretty_print()
238
 
239
  # %%
240
  def submitUserMessage(user_input: str) -> str:
@@ -244,17 +240,19 @@ def submitUserMessage(user_input: str) -> str:
244
  {
245
  "messages": [
246
  HumanMessage(
247
- user_input
248
  )
249
  ],
250
  },
251
  # Maximum number of steps to take in the graph
252
- {"recursion_limit": 40},
253
  )
254
- for s in events:
255
- a = list(s.items())[0]
256
-
257
- response = a[1]['messages'][0].content.replace("FINAL ANSWER", "")
 
 
258
 
259
  return response
260
 
 
5
  utils.load_env()
6
  os.environ['LANGCHAIN_TRACING_V2'] = "false"
7
 
8
+ # %%
9
+ from langchain.globals import set_debug, set_verbose
10
+
11
+ set_verbose(True)
12
+ set_debug(False)
13
+
14
  # %%
15
  from langchain_core.messages import HumanMessage
16
  import operator
 
18
 
19
  # for llm model
20
  from langchain_openai import ChatOpenAI
21
+ # from langchain_community.chat_models import ChatOpenAI
22
  from langchain.agents.format_scratchpad import format_to_openai_function_messages
23
  from tools import find_place_from_text, nearby_search
24
  from typing import Dict, List, Tuple, Annotated, Sequence, TypedDict
 
26
  AgentExecutor,
27
  )
28
  from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
 
29
  from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
30
  from langchain_core.messages import (
31
  AIMessage,
 
49
  def format_docs(docs):
50
  return "\n\n".join(doc.page_content for doc in docs)
51
 
52
+
53
+ ## Document csv
54
  # Specify the pattern
55
  file_pattern = "document/*.csv"
56
  file_paths = tuple(glob.glob(file_pattern))
 
72
  # Retrieve and generate using the relevant snippets of the blog.
73
  retriever = vectorstore.as_retriever()
74
 
 
75
 
76
+ ## tools and LLM
77
  retriever_tool = Tool(
78
  name="population, community and household expenditures data",
79
  func=retriever.get_relevant_documents,
 
81
  )
82
 
83
  # Bind the tools to the model
84
+ # tools = [retriever_tool, find_place_from_text, nearby_search] # Include both tools if needed
85
+ tools = [find_place_from_text, nearby_search]
86
 
87
  llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.0)
88
 
 
108
  prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
109
  llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
110
  # return prompt | llm.bind_tools(tools)
111
+ agent = prompt | llm_with_tools
112
  return agent
113
 
114
 
 
210
  # the tool calling node does not, meaning
211
  # this edge will route back to the original agent
212
  # who invoked the tool
213
+ lambda x: x["sender"],
214
+ {
215
+ "data collector":"data collector",
216
+ "analyst":"analyst",
217
+ "reporter":"reporter",
218
+ },
219
  )
220
  workflow.add_edge(START, "analyst")
221
  graph = workflow.compile()
 
230
  # pass
231
 
232
  # %%
 
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
  # %%
236
  def submitUserMessage(user_input: str) -> str:
 
240
  {
241
  "messages": [
242
  HumanMessage(
243
+ question
244
  )
245
  ],
246
  },
247
  # Maximum number of steps to take in the graph
248
+ {"recursion_limit": 20},
249
  )
250
+
251
+ events = [e for e in events]
252
+
253
+ response = list(events[-1].values())[0]["messages"][0]
254
+ response = response.content
255
+ response = response.replace("FINAL ANSWER: ", "")
256
 
257
  return response
258
 
prompt.py CHANGED
@@ -3,6 +3,7 @@ agent_meta = [
3
  "name": "analyst",
4
  "prompt": """
5
  You are the Analyst responsible for extracting key information from the user and guiding the data collection process. When the user asks about analyzing a location for a business opportunity, you will:
 
6
  - Extract the location the user wants to analyze and the keyword representing the type of place (e.g., “shop,” “coffee shop,” which represents the competitor).
7
  - Communicate this information clearly to the Data Collector, instructing them to gather relevant data based on the user’s input.
8
  """
@@ -22,7 +23,7 @@ agent_meta = [
22
  - Population data.
23
  - The tools at your disposal include:
24
  1. Population, Community, and Household Expenditures Data: Contains community type by district, household expenditures by province, and population data by district.
25
- 2. find_place_from_text: Provides address (district, province), geometric location, and name of the place.
26
  3. nearby_search: Provides a list of competitors nearby according to the keyword, including address, location, name, opening hours, rating, and plus code.
27
  - After collecting the data, send it to the Reporter. Ensure that all communications and data are handled in English.
28
  """
@@ -31,12 +32,11 @@ agent_meta = [
31
  "name": "reporter",
32
  "prompt": """
33
  You are the Reporter responsible for feasibility analysis . You role is to compiling the data into a clear and informative report for the user. When you receive the data from the Data Collector, you will:
34
-
35
  - Organize and analyze the data to generate insights about the competitive landscape and market opportunities at the specified location.
36
  - Ensure that your report includes both numerical data (such as the number of competitors, population figures, and household expenditures) and analytical insights (such as market opportunities and recommendations).
37
  - If the Data Collector is unable to find certain data(or not povide data anymore), you will still provide a final answer based on the available information.
38
  - Create a well-structured report that provides the user with actionable recommendations based on the analysis.
39
- - Ensure the report is clear, concise, and delivered in Thai language if it is the final answer.
40
  - Don't forget to give Descriptive anlytical summary at last.
41
  """
42
  }
 
3
  "name": "analyst",
4
  "prompt": """
5
  You are the Analyst responsible for extracting key information from the user and guiding the data collection process. When the user asks about analyzing a location for a business opportunity, you will:
6
+ Ensure that all communications and data are handled in English
7
  - Extract the location the user wants to analyze and the keyword representing the type of place (e.g., “shop,” “coffee shop,” which represents the competitor).
8
  - Communicate this information clearly to the Data Collector, instructing them to gather relevant data based on the user’s input.
9
  """
 
23
  - Population data.
24
  - The tools at your disposal include:
25
  1. Population, Community, and Household Expenditures Data: Contains community type by district, household expenditures by province, and population data by district.
26
+ 2. find_place_from_text: Provides address (district, province), and name of the place.
27
  3. nearby_search: Provides a list of competitors nearby according to the keyword, including address, location, name, opening hours, rating, and plus code.
28
  - After collecting the data, send it to the Reporter. Ensure that all communications and data are handled in English.
29
  """
 
32
  "name": "reporter",
33
  "prompt": """
34
  You are the Reporter responsible for feasibility analysis . You role is to compiling the data into a clear and informative report for the user. When you receive the data from the Data Collector, you will:
35
+ Ensure that all communications and data are handled in English
36
  - Organize and analyze the data to generate insights about the competitive landscape and market opportunities at the specified location.
37
  - Ensure that your report includes both numerical data (such as the number of competitors, population figures, and household expenditures) and analytical insights (such as market opportunities and recommendations).
38
  - If the Data Collector is unable to find certain data(or not povide data anymore), you will still provide a final answer based on the available information.
39
  - Create a well-structured report that provides the user with actionable recommendations based on the analysis.
 
40
  - Don't forget to give Descriptive anlytical summary at last.
41
  """
42
  }
tools.py CHANGED
@@ -17,7 +17,7 @@ def find_place_from_text(location:str):
17
  return f"""
18
  address: {r['formatted_address']}\n
19
  location: {r['geometry']['location']}\n
20
- name: {r['name']}\n
21
  """
22
 
23
  # def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
@@ -64,7 +64,7 @@ def nearby_search(input_dict: NearbySearchInput):
64
  strout += f"""
65
  address: {address}\n
66
  location: {location_info}\n
67
- name: {name}\n
68
  opening hours: {opening_hours}\n
69
  rating: {rating}\n
70
  plus code: {plus_code}\n\n
 
17
  return f"""
18
  address: {r['formatted_address']}\n
19
  location: {r['geometry']['location']}\n
20
+ location_name: {r['name']}\n
21
  """
22
 
23
  # def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
 
64
  strout += f"""
65
  address: {address}\n
66
  location: {location_info}\n
67
+ lacation_name: {name}\n
68
  opening hours: {opening_hours}\n
69
  rating: {rating}\n
70
  plus code: {plus_code}\n\n