ViPer / diffusers /pipelines /wuerstchen /pipeline_wuerstchen_prior.py
miaw1419's picture
Upload 472 files
0aaa1f1 verified
raw
history blame
23.8 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from math import ceil
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...loaders import LoraLoaderMixin
from ...schedulers import DDPMWuerstchenScheduler
from ...utils import BaseOutput, deprecate, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .modeling_wuerstchen_prior import WuerstchenPrior
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:]
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import WuerstchenPriorPipeline
>>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(
... "warp-ai/wuerstchen-prior", torch_dtype=torch.float16
... ).to("cuda")
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
>>> prior_output = pipe(prompt)
```
"""
@dataclass
class WuerstchenPriorPipelineOutput(BaseOutput):
"""
Output class for WuerstchenPriorPipeline.
Args:
image_embeddings (`torch.FloatTensor` or `np.ndarray`)
Prior image embeddings for text prompt
"""
image_embeddings: Union[torch.FloatTensor, np.ndarray]
class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
"""
Pipeline for generating image prior for Wuerstchen.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
The pipeline also inherits the following loading methods:
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
Args:
prior ([`Prior`]):
The canonical unCLIP prior to approximate the image embedding from the text embedding.
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
scheduler ([`DDPMWuerstchenScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
latent_mean ('float', *optional*, defaults to 42.0):
Mean value for latent diffusers.
latent_std ('float', *optional*, defaults to 1.0):
Standard value for latent diffusers.
resolution_multiple ('float', *optional*, defaults to 42.67):
Default resolution for multiple images generated.
"""
unet_name = "prior"
text_encoder_name = "text_encoder"
model_cpu_offload_seq = "text_encoder->prior"
_callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
prior: WuerstchenPrior,
scheduler: DDPMWuerstchenScheduler,
latent_mean: float = 42.0,
latent_std: float = 1.0,
resolution_multiple: float = 42.67,
) -> None:
super().__init__()
self.register_modules(
tokenizer=tokenizer,
text_encoder=text_encoder,
prior=prior,
scheduler=scheduler,
)
self.register_to_config(
latent_mean=latent_mean, latent_std=latent_std, resolution_multiple=resolution_multiple
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
def encode_prompt(
self,
device,
num_images_per_prompt,
do_classifier_free_guidance,
prompt=None,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
text_encoder_output = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask.to(device)
)
prompt_embeds = text_encoder_output.last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
if negative_prompt_embeds is None and do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds_text_encoder_output = self.text_encoder(
uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)
)
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.last_hidden_state
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# done duplicates
return prompt_embeds, negative_prompt_embeds
def check_inputs(
self,
prompt,
negative_prompt,
num_inference_steps,
do_classifier_free_guidance,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if not isinstance(num_inference_steps, int):
raise TypeError(
f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\
In Case you want to provide explicit timesteps, please use the 'timesteps' argument."
)
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: int = 1024,
width: int = 1024,
num_inference_steps: int = 60,
timesteps: List[float] = None,
guidance_scale: float = 8.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pt",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 60):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 8.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
`decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
linked to the text `prompt`, usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `decoder_guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~pipelines.WuerstchenPriorPipelineOutput`] or `tuple` [`~pipelines.WuerstchenPriorPipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated image embeddings.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
# 0. Define commonly used variables
device = self._execution_device
self._guidance_scale = guidance_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 1. Check inputs. Raise error if not correct
if prompt is not None and not isinstance(prompt, list):
if isinstance(prompt, str):
prompt = [prompt]
else:
raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.")
if self.do_classifier_free_guidance:
if negative_prompt is not None and not isinstance(negative_prompt, list):
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
else:
raise TypeError(
f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}."
)
self.check_inputs(
prompt,
negative_prompt,
num_inference_steps,
self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 2. Encode caption
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_encoder_hidden_states = (
torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
)
# 3. Determine latent shape of image embeddings
dtype = text_encoder_hidden_states.dtype
latent_height = ceil(height / self.config.resolution_multiple)
latent_width = ceil(width / self.config.resolution_multiple)
num_channels = self.prior.config.c_in
effnet_features_shape = (num_images_per_prompt * batch_size, num_channels, latent_height, latent_width)
# 4. Prepare and set timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latents
latents = self.prepare_latents(effnet_features_shape, dtype, device, generator, latents, self.scheduler)
# 6. Run denoising loop
self._num_timesteps = len(timesteps[:-1])
for i, t in enumerate(self.progress_bar(timesteps[:-1])):
ratio = t.expand(latents.size(0)).to(dtype)
# 7. Denoise image embeddings
predicted_image_embedding = self.prior(
torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio,
c=text_encoder_hidden_states,
)
# 8. Check for classifier free guidance and apply it
if self.do_classifier_free_guidance:
predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2)
predicted_image_embedding = torch.lerp(
predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale
)
# 9. Renoise latents to next timestep
latents = self.scheduler.step(
model_output=predicted_image_embedding,
timestep=ratio,
sample=latents,
generator=generator,
).prev_sample
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
text_encoder_hidden_states = callback_outputs.pop(
"text_encoder_hidden_states", text_encoder_hidden_states
)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 10. Denormalize the latents
latents = latents * self.config.latent_mean - self.config.latent_std
# Offload all models
self.maybe_free_model_hooks()
if output_type == "np":
latents = latents.cpu().numpy()
if not return_dict:
return (latents,)
return WuerstchenPriorPipelineOutput(latents)