miaw1419 commited on
Commit
ae51ed8
·
verified ·
1 Parent(s): b84561d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -9
app.py CHANGED
@@ -245,7 +245,6 @@ def submit_comment(comment):
245
  elif comment_images[0] in comments:
246
  comments.pop(comment_images[0], None)
247
 
248
- print(comments)
249
  next_comment = ""
250
  if comment_images[0] in comments:
251
  next_comment = comments[comment_images[0]]
@@ -263,7 +262,6 @@ def next_image():
263
  comment_images.append(comment_images[0])
264
  comment_images = comment_images[1:]
265
 
266
- print(comments)
267
  next_comment = ""
268
  if comment_images[0] in comments:
269
  next_comment = comments[comment_images[0]]
@@ -279,7 +277,6 @@ def previous_image():
279
  comment_images = comment_images[1:]
280
  comment_images = comment_images[::-1]
281
 
282
- print(comments)
283
  next_comment = ""
284
  if comment_images[0] in comments:
285
  next_comment = comments[comment_images[0]]
@@ -341,6 +338,20 @@ Here are the images and their corresponding comments:
341
 
342
  if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
343
  positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
344
  gr.Info("Visual preference successfully extracted.")
345
  else:
346
  positive_vp = ""
@@ -456,7 +467,6 @@ def api_fn(api):
456
  ]
457
  )
458
  gr.Info("Valid API")
459
- print("correct")
460
  valid_api = api
461
 
462
  except anthropic.AuthenticationError:
@@ -498,7 +508,6 @@ def generate(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_infere
498
 
499
  generator = torch.Generator().manual_seed(seed)
500
 
501
- print(f"Prompt: {prompt}")
502
  image = pipe(prompt=prompt,
503
  num_inference_steps=num_inference_steps,
504
  vp_pos=vp_pos,
@@ -606,8 +615,8 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
606
  with gr.Accordion("Examples of Effective Comments", open=False):
607
  example_comment_1 = gr.Textbox(
608
  label="Example 1",
609
- lines=4,
610
- value="Gotta say I love this one. The idea of collage painting really appeals to me. I can pick up on the subtle shadows. The combination of soft, creamy yellow and warm green looks really nice too. The paper texture itself is really interesting.",
611
  )
612
 
613
  example_comment_2 = gr.Textbox(
@@ -674,7 +683,7 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
674
  Generate personalized images using the visual preference extracted from your comments by entering a prompt below! You can adjust the personalization degree to generate results that are more or less personalized and diverse.
675
  """)
676
 
677
- slider = gr.Slider(value=0.85, minimum=0, maximum=1.5, label="Personalization degree", interactive=True)
678
 
679
  with gr.Row():
680
  prompt = gr.Dropdown(
@@ -707,7 +716,7 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
707
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
708
 
709
  with gr.Row(elem_id="main-container"):
710
- with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=False):
711
  example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
712
  gallery = gr.Gallery(
713
  value=examples[example_prompts[0]],
 
245
  elif comment_images[0] in comments:
246
  comments.pop(comment_images[0], None)
247
 
 
248
  next_comment = ""
249
  if comment_images[0] in comments:
250
  next_comment = comments[comment_images[0]]
 
262
  comment_images.append(comment_images[0])
263
  comment_images = comment_images[1:]
264
 
 
265
  next_comment = ""
266
  if comment_images[0] in comments:
267
  next_comment = comments[comment_images[0]]
 
277
  comment_images = comment_images[1:]
278
  comment_images = comment_images[::-1]
279
 
 
280
  next_comment = ""
281
  if comment_images[0] in comments:
282
  next_comment = comments[comment_images[0]]
 
338
 
339
  if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
340
  positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
341
+ positive_vp = positive_vp.split(", ")
342
+ negative_vp = negative_vp.split(", ")
343
+ common = list(set(positive_vp).intersection(negative_vp))
344
+
345
+ for vp in positive_vp:
346
+ if vp in common:
347
+ positive_vp.remove(vp)
348
+
349
+ for vp in negative_vp:
350
+ if vp in common:
351
+ negative_vp.remove(vp)
352
+
353
+ positive_vp = ", ".join(positive_vp)
354
+ negative_vp = ", ".join(negative_vp)
355
  gr.Info("Visual preference successfully extracted.")
356
  else:
357
  positive_vp = ""
 
467
  ]
468
  )
469
  gr.Info("Valid API")
 
470
  valid_api = api
471
 
472
  except anthropic.AuthenticationError:
 
508
 
509
  generator = torch.Generator().manual_seed(seed)
510
 
 
511
  image = pipe(prompt=prompt,
512
  num_inference_steps=num_inference_steps,
513
  vp_pos=vp_pos,
 
615
  with gr.Accordion("Examples of Effective Comments", open=False):
616
  example_comment_1 = gr.Textbox(
617
  label="Example 1",
618
+ lines=2,
619
+ value="I don't like this at all. The beige colors bother me. It's so minimal and boring. The texture feels too shallow.",
620
  )
621
 
622
  example_comment_2 = gr.Textbox(
 
683
  Generate personalized images using the visual preference extracted from your comments by entering a prompt below! You can adjust the personalization degree to generate results that are more or less personalized and diverse.
684
  """)
685
 
686
+ slider = gr.Slider(value=0.85, minimum=0, maximum=1, label="Personalization degree", interactive=True)
687
 
688
  with gr.Row():
689
  prompt = gr.Dropdown(
 
716
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
717
 
718
  with gr.Row(elem_id="main-container"):
719
+ with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=True):
720
  example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
721
  gallery = gr.Gallery(
722
  value=examples[example_prompts[0]],