Update app.py
Browse files
app.py
CHANGED
@@ -1,188 +1,25 @@
|
|
1 |
-
import
|
2 |
-
import subprocess
|
3 |
-
import time
|
4 |
-
from llama_cpp import Llama
|
5 |
-
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
6 |
-
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
7 |
-
from llama_cpp_agent.chat_history import BasicChatHistory
|
8 |
-
from llama_cpp_agent.chat_history.messages import Roles
|
9 |
-
import gradio as gr
|
10 |
-
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
# Download the new model
|
16 |
-
hf_hub_download(
|
17 |
-
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF",
|
18 |
-
filename="llama-3.2-1b-instruct-q4_k_m.gguf",
|
19 |
-
local_dir="./models"
|
20 |
-
)
|
21 |
-
|
22 |
-
def get_messages_formatter_type(model_name):
|
23 |
-
return MessagesFormatterType.LLAMA_3
|
24 |
-
|
25 |
-
def respond(
|
26 |
-
message,
|
27 |
-
history: list[tuple[str, str]],
|
28 |
-
model,
|
29 |
-
system_message,
|
30 |
-
max_tokens,
|
31 |
-
temperature,
|
32 |
-
top_p,
|
33 |
-
top_k,
|
34 |
-
repeat_penalty,
|
35 |
-
):
|
36 |
-
global llm
|
37 |
-
global llm_model
|
38 |
-
|
39 |
-
chat_template = get_messages_formatter_type(model)
|
40 |
-
|
41 |
-
if llm is None or llm_model != model:
|
42 |
-
llm = Llama(
|
43 |
-
model_path=f"models/{model}",
|
44 |
-
n_gpu_layers=0, # Adjust based on your GPU
|
45 |
-
n_batch=32398, # Adjust based on your RAM
|
46 |
-
n_ctx=512, # Adjust based on your RAM and desired context length
|
47 |
-
)
|
48 |
-
llm_model = model
|
49 |
-
|
50 |
-
provider = LlamaCppPythonProvider(llm)
|
51 |
-
|
52 |
-
agent = LlamaCppAgent(
|
53 |
-
provider,
|
54 |
-
system_prompt=f"{system_message}",
|
55 |
-
predefined_messages_formatter_type=chat_template,
|
56 |
-
debug_output=True
|
57 |
-
)
|
58 |
-
|
59 |
-
settings = provider.get_provider_default_settings()
|
60 |
-
settings.temperature = temperature
|
61 |
-
settings.top_k = top_k
|
62 |
-
settings.top_p = top_p
|
63 |
-
settings.max_tokens = max_tokens
|
64 |
-
settings.repeat_penalty = repeat_penalty
|
65 |
-
settings.stream = True
|
66 |
-
|
67 |
-
messages = BasicChatHistory()
|
68 |
-
|
69 |
-
for msn in history:
|
70 |
-
user = {
|
71 |
-
'role': Roles.user,
|
72 |
-
'content': msn[0]
|
73 |
-
}
|
74 |
-
assistant = {
|
75 |
-
'role': Roles.assistant,
|
76 |
-
'content': msn[1]
|
77 |
-
}
|
78 |
-
messages.add_message(user)
|
79 |
-
messages.add_message(assistant)
|
80 |
-
|
81 |
-
start_time = time.time()
|
82 |
-
token_count = 0
|
83 |
-
|
84 |
-
stream = agent.get_chat_response(
|
85 |
-
message,
|
86 |
-
llm_sampling_settings=settings,
|
87 |
-
chat_history=messages,
|
88 |
-
returns_streaming_generator=True,
|
89 |
-
print_output=False
|
90 |
-
)
|
91 |
-
|
92 |
-
outputs = ""
|
93 |
-
for output in stream:
|
94 |
-
outputs += output
|
95 |
-
token_count += len(output.split())
|
96 |
-
yield outputs
|
97 |
-
|
98 |
-
end_time = time.time()
|
99 |
-
latency = end_time - start_time
|
100 |
-
speed = token_count / (end_time - start_time)
|
101 |
-
print(f"Latency: {latency} seconds")
|
102 |
-
print(f"Speed: {speed} tokens/second")
|
103 |
-
|
104 |
-
description = """<p><center>
|
105 |
-
<a href="https://huggingface.co/hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF" target="_blank">[Meta Llama 3.2 (1B)]</a>
|
106 |
-
Meta Llama 3.2 (1B) is a multilingual large language model (LLM) optimized for conversational dialogue use cases, including agentic retrieval and summarization tasks. It outperforms many open-source and closed chat models on industry benchmarks, and is intended for commercial and research use in multiple languages.
|
107 |
-
</center></p>
|
108 |
-
"""
|
109 |
-
|
110 |
-
demo = gr.ChatInterface(
|
111 |
-
respond,
|
112 |
-
additional_inputs=[
|
113 |
-
gr.Dropdown([
|
114 |
-
"llama-3.2-1b-instruct-q4_k_m.gguf"
|
115 |
-
],
|
116 |
-
value="llama-3.2-1b-instruct-q4_k_m.gguf",
|
117 |
-
label="Model"
|
118 |
-
),
|
119 |
-
gr.TextArea(value="""You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
|
120 |
1. Complex reasoning and problem-solving
|
121 |
2. Multilingual understanding and generation
|
122 |
3. Creative and analytical writing
|
123 |
4. Code understanding and generation
|
124 |
5. Task decomposition and step-by-step guidance
|
125 |
6. Summarization and information extraction
|
|
|
126 |
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
127 |
-
"
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
step=0.05,
|
135 |
-
label="Top-p",
|
136 |
-
),
|
137 |
-
gr.Slider(
|
138 |
-
minimum=0,
|
139 |
-
maximum=100,
|
140 |
-
value=1,
|
141 |
-
step=1,
|
142 |
-
label="Top-k",
|
143 |
-
),
|
144 |
-
gr.Slider(
|
145 |
-
minimum=0.0,
|
146 |
-
maximum=2.0,
|
147 |
-
value=1.1,
|
148 |
-
step=0.1,
|
149 |
-
label="Repetition penalty",
|
150 |
-
),
|
151 |
-
],
|
152 |
-
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
|
153 |
-
body_background_fill_dark="#16141c",
|
154 |
-
block_background_fill_dark="#16141c",
|
155 |
-
block_border_width="1px",
|
156 |
-
block_title_background_fill_dark="#1e1c26",
|
157 |
-
input_background_fill_dark="#292733",
|
158 |
-
button_secondary_background_fill_dark="#24212b",
|
159 |
-
border_color_accent_dark="#343140",
|
160 |
-
border_color_primary_dark="#343140",
|
161 |
-
background_fill_secondary_dark="#16141c",
|
162 |
-
color_accent_soft_dark="transparent",
|
163 |
-
code_background_fill_dark="#292733",
|
164 |
-
),
|
165 |
-
title="Meta Llama 3.2 (1B)",
|
166 |
-
description=description,
|
167 |
-
chatbot=gr.Chatbot(
|
168 |
-
scale=1,
|
169 |
-
likeable=True,
|
170 |
-
show_copy_button=True
|
171 |
-
),
|
172 |
-
examples=[
|
173 |
-
["Hello! Can you introduce yourself?"],
|
174 |
-
["What's the capital of France?"],
|
175 |
-
["Can you explain the concept of photosynthesis?"],
|
176 |
-
["Write a short story about a robot learning to paint."],
|
177 |
-
["Explain the difference between machine learning and deep learning."],
|
178 |
-
["Summarize the key points of climate change and its global impact."],
|
179 |
-
["Explain quantum computing to a 10-year-old."],
|
180 |
-
["Design a step-by-step meal plan for someone trying to lose weight and build muscle."]
|
181 |
-
],
|
182 |
-
cache_examples=False,
|
183 |
-
autofocus=False,
|
184 |
-
concurrency_limit=None
|
185 |
)
|
186 |
-
|
187 |
-
if __name__ == "__main__":
|
188 |
-
demo.launch()
|
|
|
1 |
+
from gradio_client import Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
client = Client("KingNish/Llama-3.2-1b-CPU")
|
4 |
+
result = client.predict(
|
5 |
+
message="Hello!!",
|
6 |
+
request="llama-3.2-1b-instruct-q4_k_m.gguf",
|
7 |
+
param_3="You are Meta Llama 3.2 (1B), an advanced AI assistant created by Meta. Your capabilities include:
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
1. Complex reasoning and problem-solving
|
10 |
2. Multilingual understanding and generation
|
11 |
3. Creative and analytical writing
|
12 |
4. Code understanding and generation
|
13 |
5. Task decomposition and step-by-step guidance
|
14 |
6. Summarization and information extraction
|
15 |
+
|
16 |
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
17 |
+
",
|
18 |
+
param_4=512,
|
19 |
+
param_5=0.7,
|
20 |
+
param_6=0.9,
|
21 |
+
param_7=1,
|
22 |
+
param_8=1.1,
|
23 |
+
api_name="/chat"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
+
print(result)
|
|
|
|