Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
def predict_input_image(img): | |
# Normalize the image by cropping (center crop) | |
h, w = img.shape[:2] | |
crop_start_x = (w - 224) // 2 | |
crop_start_y = (h - 224) // 2 | |
img = img[crop_start_y:crop_start_y+224, crop_start_x:crop_start_x+224] | |
img = tf.image.resize(img, [224,224]) | |
img = np.expand_dims(img, axis = 0) | |
# Make predictions | |
model = tf.keras.models.load_model('Tumor_Model.h5') | |
prediction = model.predict(img) | |
result = 'No Tumor Detected' if prediction[0][0] > 0.5 else 'Tumor detected' | |
return prediction | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=predict_input_image, | |
inputs= 'image', | |
outputs="text", | |
) | |
# Launch the interface | |
iface.launch() |