Spaces:
Running
Running
""" | |
File: calculate_practical_tasks.py | |
Author: Elena Ryumina and Dmitry Ryumin | |
Description: Event handler for Gradio app to calculate practical tasks. | |
License: MIT License | |
""" | |
from app.oceanai_init import b5 | |
import pandas as pd | |
import re | |
import gradio as gr | |
from pathlib import Path | |
from bs4 import BeautifulSoup | |
# Importing necessary components for the Gradio app | |
from app.config import config_data | |
from app.video_metadata import video_metadata | |
from app.mbti_description import MBTI_DESCRIPTION, MBTI_DATA | |
from app.data_init import df_traits_priority_for_professions | |
from app.utils import ( | |
read_csv_file, | |
apply_rounding_and_rename_columns, | |
preprocess_scores_df, | |
get_language_settings, | |
extract_profession_weights, | |
) | |
from app.components import ( | |
html_message, | |
dataframe, | |
files_create_ui, | |
video_create_ui, | |
textbox_create_ui, | |
) | |
def colleague_type(subtask): | |
return "minor" if "junior" in subtask.lower() else "major" | |
def consumer_preferences(subtask): | |
return ( | |
config_data.Filenames_CAR_CHARACTERISTICS | |
if "mobile device" in subtask.lower() | |
else config_data.Filenames_MDA_CATEGORIES | |
) | |
def remove_parentheses(s): | |
return re.sub(r"\s*\([^)]*\)", "", s) | |
def extract_text_in_parentheses(s): | |
result = re.search(r"\(([^)]+)\)", s) | |
if result: | |
return result.group(1) | |
else: | |
return None | |
def compare_strings(original, comparison, prev=False): | |
result = [] | |
prev_class = None | |
for orig_char, comp_char in zip(original, comparison): | |
curr_class = "true" if orig_char == comp_char else "err" | |
if not prev: | |
result.append(f"<span class='{curr_class}'>{comp_char}</span>") | |
else: | |
if curr_class != prev_class: | |
result.append("</span>" if prev_class else "") | |
result.append(f"<span class='{curr_class}'>") | |
prev_class = curr_class | |
result.append(comp_char) | |
return f"<span class='wrapper_mbti'>{''.join(result + [f'</span>' if prev_class else ''])}</span>" | |
def create_person_metadata(person_id, files, video_metadata): | |
if ( | |
Path(files[person_id]).name in video_metadata | |
and config_data.Settings_SHOW_VIDEO_METADATA | |
): | |
person_metadata_list = video_metadata[Path(files[person_id]).name] | |
return ( | |
gr.Column(visible=True), | |
gr.Row(visible=True), | |
gr.Row(visible=True), | |
gr.Image(visible=True), | |
textbox_create_ui( | |
person_metadata_list[0], | |
"text", | |
"First name", | |
None, | |
None, | |
1, | |
True, | |
False, | |
True, | |
False, | |
1, | |
False, | |
), | |
gr.Row(visible=True), | |
gr.Image(visible=True), | |
textbox_create_ui( | |
person_metadata_list[1], | |
"text", | |
"Last name", | |
None, | |
None, | |
1, | |
True, | |
False, | |
True, | |
False, | |
1, | |
False, | |
), | |
gr.Row(visible=True), | |
gr.Row(visible=True), | |
gr.Image(visible=True), | |
textbox_create_ui( | |
person_metadata_list[2], | |
"email", | |
"Email", | |
None, | |
None, | |
1, | |
True, | |
False, | |
True, | |
False, | |
1, | |
False, | |
), | |
gr.Row(visible=True), | |
gr.Image(visible=True), | |
textbox_create_ui( | |
person_metadata_list[3], | |
"text", | |
"Phone number", | |
None, | |
None, | |
1, | |
True, | |
False, | |
True, | |
False, | |
1, | |
False, | |
), | |
) | |
else: | |
return ( | |
gr.Column(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
) | |
def event_handler_calculate_practical_task_blocks( | |
language, | |
type_modes, | |
files, | |
video, | |
practical_subtasks, | |
pt_scores, | |
dropdown_mbti, | |
threshold_mbti, | |
threshold_professional_skills, | |
dropdown_professional_skills, | |
target_score_ope, | |
target_score_con, | |
target_score_ext, | |
target_score_agr, | |
target_score_nneu, | |
equal_coefficient, | |
number_priority, | |
number_importance_traits, | |
threshold_consumer_preferences, | |
number_openness, | |
number_conscientiousness, | |
number_extraversion, | |
number_agreeableness, | |
number_non_neuroticism, | |
): | |
lang_id, _ = get_language_settings(language) | |
if type_modes == config_data.Settings_TYPE_MODES[1]: | |
files = [video] | |
if practical_subtasks.lower() == "16 personality types of mbti": | |
df_correlation_coefficients = read_csv_file(config_data.Links_MBTI) | |
pt_scores_copy = pt_scores.iloc[:, 1:].copy() | |
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0]) | |
if type_modes == config_data.Settings_TYPE_MODES[0]: | |
b5._professional_match( | |
df_files=pt_scores_copy, | |
correlation_coefficients=df_correlation_coefficients, | |
personality_type=remove_parentheses(dropdown_mbti), | |
threshold=threshold_mbti, | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_) | |
df_hidden = df.drop( | |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS | |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS | |
) | |
df_hidden.rename( | |
columns={ | |
"Path": "Filename", | |
"MBTI": "Personality Type", | |
"MBTI_Score": "Personality Type Score", | |
}, | |
inplace=True, | |
) | |
df_copy = df_hidden.copy() | |
df_copy["Personality Type"] = df_copy["Personality Type"].apply( | |
lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings) | |
) | |
df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False) | |
df_hidden.reset_index(inplace=True) | |
person_id = ( | |
int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 | |
) | |
short_mbti = extract_text_in_parentheses(dropdown_mbti) | |
mbti_values = df_hidden["Personality Type"].tolist() | |
df_hidden["Personality Type"] = [ | |
compare_strings(short_mbti, mbti, False) for mbti in mbti_values | |
] | |
person_metadata = create_person_metadata(person_id, files, video_metadata) | |
elif type_modes == config_data.Settings_TYPE_MODES[1]: | |
all_hidden_dfs = [] | |
for dropdown_mbti in config_data.Settings_DROPDOWN_MBTI: | |
b5._professional_match( | |
df_files=pt_scores_copy, | |
correlation_coefficients=df_correlation_coefficients, | |
personality_type=remove_parentheses(dropdown_mbti), | |
threshold=threshold_mbti, | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_) | |
df_hidden = df.drop( | |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS | |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS | |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM | |
) | |
df_hidden.insert(0, "Popular Occupations", dropdown_mbti) | |
df_hidden.rename( | |
columns={ | |
"MBTI": "Personality Type", | |
"MBTI_Score": "Personality Type Score", | |
}, | |
inplace=True, | |
) | |
short_mbti = extract_text_in_parentheses(dropdown_mbti) | |
mbti_values = df_hidden["Personality Type"].tolist() | |
df_hidden["Personality Type"] = [ | |
compare_strings(short_mbti, mbti, False) for mbti in mbti_values | |
] | |
all_hidden_dfs.append(df_hidden) | |
df_hidden = pd.concat(all_hidden_dfs, ignore_index=True) | |
df_hidden = df_hidden.sort_values( | |
by="Personality Type Score", ascending=False | |
) | |
df_hidden.reset_index(drop=True, inplace=True) | |
df_copy = df_hidden.copy() | |
df_copy["Personality Type"] = df_copy["Personality Type"].apply( | |
lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings) | |
) | |
df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False) | |
person_id = 0 | |
person_metadata = create_person_metadata(person_id, files, video_metadata) | |
existing_tuple = ( | |
gr.Row(visible=True), | |
gr.Column(visible=True), | |
dataframe( | |
headers=df_hidden.columns.tolist(), | |
values=df_hidden.values.tolist(), | |
visible=True, | |
), | |
files_create_ui( | |
config_data.Filenames_MBTI_JOB, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_MBTI, | |
True, | |
False, | |
True, | |
"csv-container", | |
), | |
gr.Accordion( | |
label=config_data.Labels_NOTE_MBTI_LABEL, | |
open=False, | |
visible=True, | |
), | |
gr.HTML(value=MBTI_DESCRIPTION, visible=True), | |
dataframe( | |
headers=MBTI_DATA.columns.tolist(), | |
values=MBTI_DATA.values.tolist(), | |
visible=True, | |
elem_classes="mbti-dataframe", | |
), | |
gr.Column(visible=True), | |
video_create_ui( | |
value=files[person_id], | |
file_name=Path(files[person_id]).name, | |
label="Best Person ID - " + str(person_id + 1), | |
visible=True, | |
elem_classes="video-sorted-container", | |
), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), | |
) | |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] | |
elif practical_subtasks.lower() == "professional groups": | |
if type_modes == config_data.Settings_TYPE_MODES[0]: | |
sum_weights = sum( | |
[ | |
number_openness, | |
number_conscientiousness, | |
number_extraversion, | |
number_agreeableness, | |
number_non_neuroticism, | |
] | |
) | |
if sum_weights != 100: | |
gr.Warning( | |
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights) | |
) | |
return ( | |
gr.Row(visible=False), | |
gr.Column(visible=False), | |
dataframe(visible=False), | |
files_create_ui( | |
None, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_PS, | |
True, | |
False, | |
False, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=False), | |
video_create_ui(visible=False), | |
gr.Column(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
html_message( | |
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights), | |
False, | |
True, | |
), | |
) | |
else: | |
b5._candidate_ranking( | |
df_files=pt_scores.iloc[:, 1:], | |
weigths_openness=number_openness, | |
weigths_conscientiousness=number_conscientiousness, | |
weigths_extraversion=number_extraversion, | |
weigths_agreeableness=number_agreeableness, | |
weigths_non_neuroticism=number_non_neuroticism, | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_ranking_) | |
df_hidden = df.drop( | |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS | |
) | |
df_hidden.to_csv(config_data.Filenames_POTENTIAL_CANDIDATES) | |
df_hidden.reset_index(inplace=True) | |
person_id = ( | |
int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 | |
) | |
person_metadata = create_person_metadata( | |
person_id, files, video_metadata | |
) | |
elif type_modes == config_data.Settings_TYPE_MODES[1]: | |
all_hidden_dfs = [] | |
for dropdown_candidate in config_data.Settings_DROPDOWN_CANDIDATES[:-1]: | |
weights, _ = extract_profession_weights( | |
df_traits_priority_for_professions, | |
dropdown_candidate, | |
) | |
sum_weights = sum(weights) | |
if sum_weights != 100: | |
gr.Warning( | |
config_data.InformationMessages_SUM_WEIGHTS.format(sum_weights) | |
) | |
return ( | |
gr.Row(visible=False), | |
gr.Column(visible=False), | |
dataframe(visible=False), | |
files_create_ui( | |
None, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_PS, | |
True, | |
False, | |
False, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=False), | |
video_create_ui(visible=False), | |
gr.Column(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
html_message( | |
config_data.InformationMessages_SUM_WEIGHTS.format( | |
sum_weights | |
), | |
False, | |
True, | |
), | |
) | |
else: | |
b5._candidate_ranking( | |
df_files=pt_scores.iloc[:, 1:], | |
weigths_openness=weights[0], | |
weigths_conscientiousness=weights[1], | |
weigths_extraversion=weights[2], | |
weigths_agreeableness=weights[3], | |
weigths_non_neuroticism=weights[4], | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_ranking_) | |
df_hidden = df.drop( | |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS | |
+ config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM | |
) | |
df_hidden.insert(0, "Professional Group", dropdown_candidate) | |
all_hidden_dfs.append(df_hidden) | |
df_hidden = pd.concat(all_hidden_dfs, ignore_index=True) | |
df_hidden.rename( | |
columns={ | |
"Candidate score": "Summary Score", | |
}, | |
inplace=True, | |
) | |
df_hidden = df_hidden.sort_values(by="Summary Score", ascending=False) | |
df_hidden.reset_index(drop=True, inplace=True) | |
df_hidden.to_csv( | |
config_data.Filenames_POTENTIAL_CANDIDATES, index=False | |
) | |
person_id = 0 | |
person_metadata = create_person_metadata( | |
person_id, files, video_metadata | |
) | |
existing_tuple = ( | |
gr.Row(visible=True), | |
gr.Column(visible=True), | |
dataframe( | |
headers=df_hidden.columns.tolist(), | |
values=df_hidden.values.tolist(), | |
visible=True, | |
), | |
files_create_ui( | |
config_data.Filenames_POTENTIAL_CANDIDATES, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_PG, | |
True, | |
False, | |
True, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=True), | |
video_create_ui( | |
value=files[person_id], | |
file_name=Path(files[person_id]).name, | |
label="Best Person ID - " + str(person_id + 1), | |
visible=True, | |
elem_classes="video-sorted-container", | |
), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), | |
) | |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] | |
elif practical_subtasks.lower() == "professional skills": | |
df_professional_skills = read_csv_file(config_data.Links_PROFESSIONAL_SKILLS) | |
b5._priority_skill_calculation( | |
df_files=pt_scores.iloc[:, 1:], | |
correlation_coefficients=df_professional_skills, | |
threshold=threshold_professional_skills, | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_priority_skill_) | |
professional_skills_list = ( | |
config_data.Settings_DROPDOWN_PROFESSIONAL_SKILLS.copy() | |
) | |
professional_skills_list.remove(dropdown_professional_skills) | |
df_hidden = df.drop( | |
columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS | |
+ professional_skills_list | |
) | |
df_hidden.to_csv(config_data.Filenames_PT_SKILLS_SCORES) | |
df_hidden.reset_index(inplace=True) | |
df_hidden = df_hidden.sort_values( | |
by=[dropdown_professional_skills], ascending=False | |
) | |
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 | |
person_metadata = create_person_metadata(person_id, files, video_metadata) | |
existing_tuple = ( | |
gr.Row(visible=True), | |
gr.Column(visible=True), | |
dataframe( | |
headers=df_hidden.columns.tolist(), | |
values=df_hidden.values.tolist(), | |
visible=True, | |
), | |
files_create_ui( | |
config_data.Filenames_PT_SKILLS_SCORES, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_PS, | |
True, | |
False, | |
True, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=True), | |
video_create_ui( | |
value=files[person_id], | |
file_name=Path(files[person_id]).name, | |
label="Best Person ID - " + str(person_id + 1), | |
visible=True, | |
elem_classes="video-sorted-container", | |
), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), | |
) | |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] | |
elif ( | |
practical_subtasks.lower() == "finding a suitable junior colleague" | |
or practical_subtasks.lower() == "finding a suitable senior colleague" | |
): | |
df_correlation_coefficients = read_csv_file( | |
config_data.Links_FINDING_COLLEAGUE, ["ID"] | |
) | |
b5._colleague_ranking( | |
df_files=pt_scores.iloc[:, 1:], | |
correlation_coefficients=df_correlation_coefficients, | |
target_scores=[ | |
target_score_ope, | |
target_score_con, | |
target_score_ext, | |
target_score_agr, | |
target_score_nneu, | |
], | |
colleague=colleague_type(practical_subtasks), | |
equal_coefficients=equal_coefficient, | |
out=False, | |
) | |
df = apply_rounding_and_rename_columns(b5.df_files_colleague_) | |
df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS) | |
df_hidden.to_csv( | |
colleague_type(practical_subtasks) + config_data.Filenames_COLLEAGUE_RANKING | |
) | |
df_hidden.reset_index(inplace=True) | |
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 | |
person_metadata = create_person_metadata(person_id, files, video_metadata) | |
existing_tuple = ( | |
gr.Row(visible=True), | |
gr.Column(visible=True), | |
dataframe( | |
headers=df_hidden.columns.tolist(), | |
values=df_hidden.values.tolist(), | |
visible=True, | |
), | |
files_create_ui( | |
colleague_type(practical_subtasks) | |
+ config_data.Filenames_COLLEAGUE_RANKING, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_WT, | |
True, | |
False, | |
True, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=True), | |
video_create_ui( | |
value=files[person_id], | |
file_name=Path(files[person_id]).name, | |
label="Best Person ID - " + str(person_id + 1), | |
visible=True, | |
elem_classes="video-sorted-container", | |
), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), | |
) | |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] | |
elif ( | |
practical_subtasks.lower() == "car characteristics" | |
or practical_subtasks.lower() == "mobile device application categories" | |
or practical_subtasks.lower() == "clothing style correlation" | |
): | |
if practical_subtasks.lower() == "car characteristics": | |
df_correlation_coefficients = read_csv_file( | |
config_data.Links_CAR_CHARACTERISTICS, | |
["Style and performance", "Safety and practicality"], | |
) | |
elif practical_subtasks.lower() == "mobile device application categories": | |
df_correlation_coefficients = read_csv_file( | |
config_data.Links_MDA_CATEGORIES | |
) | |
elif practical_subtasks.lower() == "clothing style correlation": | |
df_correlation_coefficients = read_csv_file(config_data.Links_CLOTHING_SC) | |
pt_scores_copy = pt_scores.iloc[:, 1:].copy() | |
preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0]) | |
b5._priority_calculation( | |
df_files=pt_scores_copy, | |
correlation_coefficients=df_correlation_coefficients, | |
col_name_ocean="Trait", | |
threshold=threshold_consumer_preferences, | |
number_priority=number_priority, | |
number_importance_traits=number_importance_traits, | |
out=False, | |
) | |
df_files_priority = b5.df_files_priority_.copy() | |
df_files_priority.reset_index(inplace=True) | |
df = apply_rounding_and_rename_columns(df_files_priority.iloc[:, 1:]) | |
preprocess_scores_df(df, config_data.Dataframes_PT_SCORES[0][0]) | |
df_hidden = df.drop(columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS) | |
df_hidden.to_csv(consumer_preferences(practical_subtasks)) | |
df_hidden.reset_index(inplace=True) | |
person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1 | |
person_metadata = create_person_metadata(person_id, files, video_metadata) | |
existing_tuple = ( | |
gr.Row(visible=True), | |
gr.Column(visible=True), | |
dataframe( | |
headers=df_hidden.columns.tolist(), | |
values=df_hidden.values.tolist(), | |
visible=True, | |
), | |
files_create_ui( | |
consumer_preferences(practical_subtasks), | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_CP, | |
True, | |
False, | |
True, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=True), | |
video_create_ui( | |
value=files[person_id], | |
file_name=Path(files[person_id]).name, | |
label="Best Person ID - " + str(person_id + 1), | |
visible=True, | |
elem_classes="video-sorted-container", | |
), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, False), | |
) | |
return existing_tuple[:-1] + person_metadata + existing_tuple[-1:] | |
else: | |
gr.Info(config_data.InformationMessages_NOTI_IN_DEV) | |
return ( | |
gr.Row(visible=False), | |
gr.Column(visible=False), | |
dataframe(visible=False), | |
files_create_ui( | |
None, | |
"single", | |
[".csv"], | |
config_data.OtherMessages_EXPORT_PS, | |
True, | |
False, | |
False, | |
"csv-container", | |
), | |
gr.Accordion(visible=False), | |
gr.HTML(visible=False), | |
dataframe(visible=False), | |
gr.Column(visible=False), | |
video_create_ui(visible=False), | |
gr.Column(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
gr.Row(visible=False), | |
gr.Image(visible=False), | |
textbox_create_ui(visible=False), | |
html_message(config_data.InformationMessages_NOTI_IN_DEV, False, True), | |
) | |