ElenaRyumina DmitryRyumin commited on
Commit
2035e46
Β·
verified Β·
1 Parent(s): e27c731

- Summary (f6125144e9df803bac37023b6854f03c30d62a31)
- Merge branch 'main' of https://huggingface.co/spaces/ElenaRyumina/OCEANAI (2f050c06a94348ba17660fdf0dd257a7a30f2f9a)
- Summary (8f52d543a1de5a77b59164e6f4f721696fc64299)
- Merge branch 'main' of https://huggingface.co/spaces/ElenaRyumina/OCEANAI (fffa0062f0da04563ce8cd5b8c7e70e3ae783833)
- Summary (1717e06c53138f3eaf52e38f984035d5fbbceac5)


Co-authored-by: Dmitry Ryumin <[email protected]>

app.py CHANGED
@@ -93,6 +93,6 @@ if __name__ == "__main__":
93
 
94
  create_gradio_app().queue(api_open=False).launch(
95
  share=False,
96
- server_name=None,
97
- server_port=None,
98
  )
 
93
 
94
  create_gradio_app().queue(api_open=False).launch(
95
  share=False,
96
+ server_name=config_data.AppSettings_SERVER_NAME,
97
+ server_port=config_data.AppSettings_PORT,
98
  )
app/event_handlers/calculate_practical_tasks.py CHANGED
@@ -6,9 +6,11 @@ License: MIT License
6
  """
7
 
8
  from app.oceanai_init import b5
 
9
  import re
10
  import gradio as gr
11
  from pathlib import Path
 
12
 
13
  # Importing necessary components for the Gradio app
14
  from app.config import config_data
@@ -204,44 +206,106 @@ def event_handler_calculate_practical_task_blocks(
204
 
205
  preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
206
 
207
- b5._professional_match(
208
- df_files=pt_scores_copy,
209
- correlation_coefficients=df_correlation_coefficients,
210
- personality_type=remove_parentheses(dropdown_mbti),
211
- threshold=threshold_mbti,
212
- out=False,
213
- )
 
214
 
215
- df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_)
216
 
217
- df_hidden = df.drop(
218
- columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
219
- + config_data.Settings_DROPDOWN_MBTI_DEL_COLS
220
- )
221
 
222
- df_hidden.rename(
223
- columns={
224
- "Path": "Filename",
225
- "MBTI": "Personality Type",
226
- "MBTI_Score": "Personality Type Score",
227
- },
228
- inplace=True,
229
- )
230
 
231
- df_hidden.to_csv(config_data.Filenames_MBTI_JOB)
 
 
 
 
232
 
233
- df_hidden.reset_index(inplace=True)
234
 
235
- person_id = int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
 
 
236
 
237
- short_mbti = extract_text_in_parentheses(dropdown_mbti)
238
- mbti_values = df_hidden["Personality Type"].tolist()
239
 
240
- df_hidden["Personality Type"] = [
241
- compare_strings(short_mbti, mbti, False) for mbti in mbti_values
242
- ]
243
 
244
- person_metadata = create_person_metadata(person_id, files, video_metadata)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
 
246
  existing_tuple = (
247
  gr.Row(visible=True),
 
6
  """
7
 
8
  from app.oceanai_init import b5
9
+ import pandas as pd
10
  import re
11
  import gradio as gr
12
  from pathlib import Path
13
+ from bs4 import BeautifulSoup
14
 
15
  # Importing necessary components for the Gradio app
16
  from app.config import config_data
 
206
 
207
  preprocess_scores_df(pt_scores_copy, config_data.Dataframes_PT_SCORES[0][0])
208
 
209
+ if type_modes == config_data.Settings_TYPE_MODES[0]:
210
+ b5._professional_match(
211
+ df_files=pt_scores_copy,
212
+ correlation_coefficients=df_correlation_coefficients,
213
+ personality_type=remove_parentheses(dropdown_mbti),
214
+ threshold=threshold_mbti,
215
+ out=False,
216
+ )
217
 
218
+ df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_)
219
 
220
+ df_hidden = df.drop(
221
+ columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
222
+ + config_data.Settings_DROPDOWN_MBTI_DEL_COLS
223
+ )
224
 
225
+ df_hidden.rename(
226
+ columns={
227
+ "Path": "Filename",
228
+ "MBTI": "Personality Type",
229
+ "MBTI_Score": "Personality Type Score",
230
+ },
231
+ inplace=True,
232
+ )
233
 
234
+ df_copy = df_hidden.copy()
235
+ df_copy["Personality Type"] = df_copy["Personality Type"].apply(
236
+ lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings)
237
+ )
238
+ df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False)
239
 
240
+ df_hidden.reset_index(inplace=True)
241
 
242
+ person_id = (
243
+ int(df_hidden.iloc[0][config_data.Dataframes_PT_SCORES[0][0]]) - 1
244
+ )
245
 
246
+ short_mbti = extract_text_in_parentheses(dropdown_mbti)
247
+ mbti_values = df_hidden["Personality Type"].tolist()
248
 
249
+ df_hidden["Personality Type"] = [
250
+ compare_strings(short_mbti, mbti, False) for mbti in mbti_values
251
+ ]
252
 
253
+ person_metadata = create_person_metadata(person_id, files, video_metadata)
254
+ elif type_modes == config_data.Settings_TYPE_MODES[1]:
255
+ all_hidden_dfs = []
256
+
257
+ for dropdown_mbti in config_data.Settings_DROPDOWN_MBTI:
258
+ b5._professional_match(
259
+ df_files=pt_scores_copy,
260
+ correlation_coefficients=df_correlation_coefficients,
261
+ personality_type=remove_parentheses(dropdown_mbti),
262
+ threshold=threshold_mbti,
263
+ out=False,
264
+ )
265
+
266
+ df = apply_rounding_and_rename_columns(b5.df_files_MBTI_job_match_)
267
+
268
+ df_hidden = df.drop(
269
+ columns=config_data.Settings_SHORT_PROFESSIONAL_SKILLS
270
+ + config_data.Settings_DROPDOWN_MBTI_DEL_COLS_WEBCAM
271
+ )
272
+
273
+ df_hidden.insert(0, "Personality Type (Dropdown)", dropdown_mbti)
274
+
275
+ df_hidden.rename(
276
+ columns={
277
+ "MBTI": "Personality Type",
278
+ "MBTI_Score": "Personality Type Score",
279
+ },
280
+ inplace=True,
281
+ )
282
+
283
+ short_mbti = extract_text_in_parentheses(dropdown_mbti)
284
+ mbti_values = df_hidden["Personality Type"].tolist()
285
+
286
+ df_hidden["Personality Type"] = [
287
+ compare_strings(short_mbti, mbti, False) for mbti in mbti_values
288
+ ]
289
+
290
+ all_hidden_dfs.append(df_hidden)
291
+
292
+ df_hidden = pd.concat(all_hidden_dfs, ignore_index=True)
293
+
294
+ df_hidden = df_hidden.sort_values(
295
+ by="Personality Type Score", ascending=False
296
+ )
297
+
298
+ df_hidden.reset_index(drop=True, inplace=True)
299
+
300
+ df_copy = df_hidden.copy()
301
+ df_copy["Personality Type"] = df_copy["Personality Type"].apply(
302
+ lambda x: "".join(BeautifulSoup(x, "html.parser").stripped_strings)
303
+ )
304
+ df_copy.to_csv(config_data.Filenames_MBTI_JOB, index=False)
305
+
306
+ person_id = 0
307
+
308
+ person_metadata = create_person_metadata(person_id, files, video_metadata)
309
 
310
  existing_tuple = (
311
  gr.Row(visible=True),
app/event_handlers/event_handlers.py CHANGED
@@ -539,7 +539,7 @@ def setup_app_event_handlers(
539
  )
540
  practical_task_sorted.select(
541
  event_handler_practical_task_sorted,
542
- [files, practical_task_sorted],
543
  [
544
  video_sorted_column,
545
  video_sorted,
 
539
  )
540
  practical_task_sorted.select(
541
  event_handler_practical_task_sorted,
542
+ [type_modes, files, video, practical_task_sorted],
543
  [
544
  video_sorted_column,
545
  video_sorted,
app/event_handlers/practical_task_sorted.py CHANGED
@@ -15,16 +15,21 @@ from app.components import video_create_ui, textbox_create_ui
15
 
16
 
17
  def event_handler_practical_task_sorted(
18
- files, practical_task_sorted, evt_data: gr.SelectData
19
  ):
20
- person_id = (
21
- int(
22
- practical_task_sorted.iloc[evt_data.index[0]][
23
- config_data.Dataframes_PT_SCORES[0][0]
24
- ]
 
 
 
25
  )
26
- - 1
27
- )
 
 
28
 
29
  if evt_data.index[0] == 0:
30
  label = "Best"
 
15
 
16
 
17
  def event_handler_practical_task_sorted(
18
+ type_modes, files, video, practical_task_sorted, evt_data: gr.SelectData
19
  ):
20
+ if type_modes == config_data.Settings_TYPE_MODES[0]:
21
+ person_id = (
22
+ int(
23
+ practical_task_sorted.iloc[evt_data.index[0]][
24
+ config_data.Dataframes_PT_SCORES[0][0]
25
+ ]
26
+ )
27
+ - 1
28
  )
29
+ elif type_modes == config_data.Settings_TYPE_MODES[1]:
30
+ files = [video]
31
+
32
+ person_id = 0
33
 
34
  if evt_data.index[0] == 0:
35
  label = "Best"
config.toml CHANGED
@@ -1,5 +1,5 @@
1
  [AppSettings]
2
- APP_VERSION = "0.10.1"
3
  SERVER_NAME = "127.0.0.1"
4
  PORT = 7860
5
  CSS_PATH = "app.css"
@@ -148,6 +148,7 @@ DROPDOWN_MBTI = [
148
  "The Commander (ENTJ): Construction Supervisor, Health Services Administrator, Financial Accountant, Auditor, Lawyer, School Principal, Chemical Engineer, Database Manager, etc.",
149
  ]
150
  DROPDOWN_MBTI_DEL_COLS = ["EI", "SN", "TF", "JP", "Match"]
 
151
  SHOW_VIDEO_METADATA = true
152
  SUPPORTED_VIDEO_EXT = ["mp4", "mov", "avi", "flv"]
153
  TYPE_MODES = ["Files", "Web"]
 
1
  [AppSettings]
2
+ APP_VERSION = "0.10.2"
3
  SERVER_NAME = "127.0.0.1"
4
  PORT = 7860
5
  CSS_PATH = "app.css"
 
148
  "The Commander (ENTJ): Construction Supervisor, Health Services Administrator, Financial Accountant, Auditor, Lawyer, School Principal, Chemical Engineer, Database Manager, etc.",
149
  ]
150
  DROPDOWN_MBTI_DEL_COLS = ["EI", "SN", "TF", "JP", "Match"]
151
+ DROPDOWN_MBTI_DEL_COLS_WEBCAM = ["EI", "SN", "TF", "JP", "Match", "Path"]
152
  SHOW_VIDEO_METADATA = true
153
  SUPPORTED_VIDEO_EXT = ["mp4", "mov", "avi", "flv"]
154
  TYPE_MODES = ["Files", "Web"]
requirements.txt CHANGED
@@ -4,3 +4,4 @@ toml==0.10.2
4
  oceanai==1.0.0a46
5
  torch==2.2.2
6
  psutil==6.1.0
 
 
4
  oceanai==1.0.0a46
5
  torch==2.2.2
6
  psutil==6.1.0
7
+ beautifulsoup4==4.12.3