File size: 1,342 Bytes
9fa8e4e
 
e77d805
 
9fa8e4e
e77d805
9fa8e4e
e77d805
9fa8e4e
2b7b6d9
e77d805
 
 
9fa8e4e
 
e77d805
 
 
 
 
9fa8e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77d805
 
9fa8e4e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
import os

load_dotenv()

system_message = os.getenv("SYSTEM_MESSAGE")

client = InferenceClient(model="HuggingFaceH4/zephyr-7b-alpha")

def respond(message, history, max_tokens, temperature, top_p):
    
    messages = [{"role": "system", "content": system_message}]

    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
    ]
)

if __name__ == "__main__":
    demo.launch()