Spaces:
Running
Running
File size: 1,342 Bytes
9fa8e4e e77d805 9fa8e4e e77d805 9fa8e4e e77d805 9fa8e4e 2b7b6d9 e77d805 9fa8e4e e77d805 9fa8e4e e77d805 9fa8e4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from huggingface_hub import InferenceClient
from dotenv import load_dotenv
import os
load_dotenv()
system_message = os.getenv("SYSTEM_MESSAGE")
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-alpha")
def respond(message, history, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
]
)
if __name__ == "__main__":
demo.launch() |