File size: 1,860 Bytes
8714c6e
d218366
 
1ba2518
d218366
 
 
 
 
 
a93f255
 
 
d218366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os

import streamlit as st 
from dotenv import load_dotenv
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain, SequentialChain 
from langchain.memory import ConversationBufferMemory
from langchain.utilities import WikipediaAPIWrapper 

load_dotenv()

os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY')

# App framework
st.title('💀 Aezx YouTube GPT Creator')
st.write("Bego-Gpt By AezersX")
prompt = st.text_input('Prompt') 

# Prompt templates
title_template = PromptTemplate(
    input_variables = ['topic'],
    template='write me a youtube video title about {topic}'
)

script_template = PromptTemplate(
    input_variables = ['title', 'wikipedia_research'], 
    template='write me a youtube video script based on this title TITLE: {title} while leveraging this wikipedia reserch:{wikipedia_research} '
)

# Memory 
title_memory = ConversationBufferMemory(input_key='topic', memory_key='chat_history')
script_memory = ConversationBufferMemory(input_key='title', memory_key='chat_history')


# Llms
llm = OpenAI(temperature=0.9) 
title_chain = LLMChain(llm=llm, prompt=title_template, verbose=True, output_key='title', memory=title_memory)
script_chain = LLMChain(llm=llm, prompt=script_template, verbose=True, output_key='script', memory=script_memory)

wiki = WikipediaAPIWrapper()

# Show stuff to the screen if there's a prompt
if prompt: 
    title = title_chain.run(prompt)
    wiki_research = wiki.run(prompt) 
    script = script_chain.run(title=title, wikipedia_research=wiki_research)

    st.write(title) 
    st.write(script) 

    with st.expander('Title History'): 
        st.info(title_memory.buffer)

    with st.expander('Script History'): 
        st.info(script_memory.buffer)

    with st.expander('Wikipedia Research'): 
        st.info(wiki_research)