Emmawang commited on
Commit
da5bc99
·
1 Parent(s): 86b5c2d

first commit

Browse files
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. app.py +38 -0
  3. requirement.txt +3 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from gtts import gTTS
4
+
5
+ def audio(text):
6
+ # Summarize the input text using the Hugging Face model
7
+ # Load the pre-trained summarization model from Hugging Face
8
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
9
+ summary = summarizer(text, do_sample=False)[0]["summary_text"]
10
+ # Convert the summary to audio using Google Text-to-Speech
11
+ tts = gTTS(summary)
12
+ tts.save("summary.mp3")
13
+ return "summary.mp3"
14
+
15
+ def text_summary(text):
16
+ # Summarize the input text using the Hugging Face model
17
+ # Load the pre-trained summarization model from Hugging Face
18
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
19
+ summary = summarizer(text, do_sample=False)[0]["summary_text"]
20
+ return summary
21
+
22
+ # using streamlit to create a web app to display the summary or play the audio
23
+
24
+ import streamlit as st
25
+
26
+ st.title("📌 Your Personal Audio Summary")
27
+ text = st.text_input("Enter text to summarize")
28
+
29
+ #choose between text summary or audio summary
30
+ option = st.selectbox("Choose between text summary or audio summary", ("📃Text Summary", "🗣Audio Summary"))
31
+
32
+ if st.button("Summarize"):
33
+ if option == "📃Text Summary":
34
+ summary = text_summary(text)
35
+ st.write(summary)
36
+ if option == "🗣Audio Summary":
37
+ file_path = audio(text)
38
+ st.audio(file_path)
requirement.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ transformers
3
+ gtts