Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from collections import Counter
|
5 |
+
from time import time
|
6 |
+
import tkinter.filedialog
|
7 |
+
from tkinter import *
|
8 |
+
import sys
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
def k_nearest_neighbors(predict, k):
|
12 |
+
distances = []
|
13 |
+
for image in training_data:
|
14 |
+
distances.append([np.linalg.norm(image[0] - predict), image[1]]) # calcul de distance euclidienne
|
15 |
+
distances.sort()
|
16 |
+
votes = [i[1] for i in distances[:k]]
|
17 |
+
votes = ''.join(str(e) for e in votes)
|
18 |
+
votes = votes.replace(',', '')
|
19 |
+
votes = votes.replace(' ', '')
|
20 |
+
result = Counter(votes).most_common(1)[0][0]
|
21 |
+
return result
|
22 |
+
|
23 |
+
|
24 |
+
def test():
|
25 |
+
start = time()
|
26 |
+
correct = 0
|
27 |
+
total = 0
|
28 |
+
skipped = 0
|
29 |
+
for i in range(len(x_test)+1):
|
30 |
+
try:
|
31 |
+
prediction = k_nearest_neighbors(x_test[i], 5)
|
32 |
+
if int(prediction) == y_test[i]:
|
33 |
+
correct += 1
|
34 |
+
total += 1
|
35 |
+
except Exception as e:
|
36 |
+
print('An exception occured')
|
37 |
+
skipped += 1
|
38 |
+
accuracy = correct/total
|
39 |
+
end = time()
|
40 |
+
print(end-start)
|
41 |
+
print(accuracy)
|
42 |
+
|
43 |
+
def ia_handler(image):
|
44 |
+
pred = k_nearest_neighbors(img, 10)
|
45 |
+
if pred == 0:
|
46 |
+
return 'It\'s a coin'
|
47 |
+
return 'It\'s a banknote'
|
48 |
+
|
49 |
+
def main():
|
50 |
+
if len(sys.argv) > 1 and sys.argv[1] == '--cli':
|
51 |
+
root = Tk()
|
52 |
+
root.withdraw()
|
53 |
+
root.update()
|
54 |
+
filename = tkinter.filedialog.askopenfilename(title="Ouvrir fichier", filetypes=[('all files', '.*')]) # sélectionner la photo
|
55 |
+
src = cv2.imread(cv2.samples.findFile(filename), cv2.IMREAD_COLOR) # charger la photo
|
56 |
+
root.destroy()
|
57 |
+
img = resize_img(src)
|
58 |
+
pred = k_nearest_neighbors(img, 10)
|
59 |
+
if pred == '0':
|
60 |
+
print('Coin')
|
61 |
+
else:
|
62 |
+
print('Banknote')
|
63 |
+
else:
|
64 |
+
iface = gr.Interface(fn=ia_handler, inputs="image", outputs="text")
|
65 |
+
iface.launch()
|
66 |
+
|
67 |
+
|
68 |
+
def resize_img(img):
|
69 |
+
dim = (150, 150)
|
70 |
+
new_img = cv2.resize(img, dim)
|
71 |
+
return new_img
|
72 |
+
|
73 |
+
if __name__=="__main__":
|
74 |
+
coin_datadir_train = '../coins-dataset/classified/train'
|
75 |
+
coin_datadir_test = '../coins-dataset/classified/test'
|
76 |
+
note_datadir_train = '../banknote-dataset/classified/train'
|
77 |
+
note_datadir_test = '../banknote-dataset/classified/test'
|
78 |
+
|
79 |
+
categories = ['1c', '2c', '5c', '10c', '20c', '50c', '1e', '2e', '5e', '10e', '20e', '50e']
|
80 |
+
coin_index = 8
|
81 |
+
|
82 |
+
training_data = []
|
83 |
+
|
84 |
+
for category in categories[:coin_index]:
|
85 |
+
path = os.path.join(coin_datadir_train, category)
|
86 |
+
label = 0
|
87 |
+
for img in os.listdir(path):
|
88 |
+
img_array = cv2.imread(os.path.join(path, img))
|
89 |
+
training_data.append([img_array, label])
|
90 |
+
|
91 |
+
for category in categories[coin_index:]:
|
92 |
+
path = os.path.join(note_datadir_train, category)
|
93 |
+
label = 1
|
94 |
+
for img in os.listdir(path):
|
95 |
+
img_array = resize_img(cv2.imread(os.path.join(path, img)))
|
96 |
+
training_data.append([img_array, label])
|
97 |
+
|
98 |
+
|
99 |
+
testing_data = []
|
100 |
+
|
101 |
+
for category in categories[:coin_index]:
|
102 |
+
path = os.path.join(coin_datadir_test, category)
|
103 |
+
label = 0
|
104 |
+
for img in os.listdir(path):
|
105 |
+
img_array = cv2.imread(os.path.join(path, img))
|
106 |
+
testing_data.append([img_array, label])
|
107 |
+
|
108 |
+
for category in categories[coin_index:]:
|
109 |
+
path = os.path.join(note_datadir_test, category)
|
110 |
+
label = 1
|
111 |
+
for img in os.listdir(path):
|
112 |
+
img_array = resize_img(cv2.imread(os.path.join(path, img)))
|
113 |
+
testing_data.append([img_array, label])
|
114 |
+
|
115 |
+
|
116 |
+
x_train = []
|
117 |
+
y_train = []
|
118 |
+
|
119 |
+
for features, label in training_data:
|
120 |
+
x_train.append(features)
|
121 |
+
y_train.append(label)
|
122 |
+
|
123 |
+
x_train = np.array(x_train)
|
124 |
+
|
125 |
+
|
126 |
+
x_test = []
|
127 |
+
y_test = []
|
128 |
+
|
129 |
+
for features, label in testing_data:
|
130 |
+
x_test.append(features)
|
131 |
+
y_test.append(label)
|
132 |
+
|
133 |
+
x_test = np.array(x_test)
|
134 |
+
main()
|