Naxos commited on
Commit
dc3f74b
·
1 Parent(s): 8a9c618

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ from collections import Counter
5
+ from time import time
6
+ import tkinter.filedialog
7
+ from tkinter import *
8
+ import sys
9
+ import gradio as gr
10
+
11
+ def k_nearest_neighbors(predict, k):
12
+ distances = []
13
+ for image in training_data:
14
+ distances.append([np.linalg.norm(image[0] - predict), image[1]]) # calcul de distance euclidienne
15
+ distances.sort()
16
+ votes = [i[1] for i in distances[:k]]
17
+ votes = ''.join(str(e) for e in votes)
18
+ votes = votes.replace(',', '')
19
+ votes = votes.replace(' ', '')
20
+ result = Counter(votes).most_common(1)[0][0]
21
+ return result
22
+
23
+
24
+ def test():
25
+ start = time()
26
+ correct = 0
27
+ total = 0
28
+ skipped = 0
29
+ for i in range(len(x_test)+1):
30
+ try:
31
+ prediction = k_nearest_neighbors(x_test[i], 5)
32
+ if int(prediction) == y_test[i]:
33
+ correct += 1
34
+ total += 1
35
+ except Exception as e:
36
+ print('An exception occured')
37
+ skipped += 1
38
+ accuracy = correct/total
39
+ end = time()
40
+ print(end-start)
41
+ print(accuracy)
42
+
43
+ def ia_handler(image):
44
+ pred = k_nearest_neighbors(img, 10)
45
+ if pred == 0:
46
+ return 'It\'s a coin'
47
+ return 'It\'s a banknote'
48
+
49
+ def main():
50
+ if len(sys.argv) > 1 and sys.argv[1] == '--cli':
51
+ root = Tk()
52
+ root.withdraw()
53
+ root.update()
54
+ filename = tkinter.filedialog.askopenfilename(title="Ouvrir fichier", filetypes=[('all files', '.*')]) # sélectionner la photo
55
+ src = cv2.imread(cv2.samples.findFile(filename), cv2.IMREAD_COLOR) # charger la photo
56
+ root.destroy()
57
+ img = resize_img(src)
58
+ pred = k_nearest_neighbors(img, 10)
59
+ if pred == '0':
60
+ print('Coin')
61
+ else:
62
+ print('Banknote')
63
+ else:
64
+ iface = gr.Interface(fn=ia_handler, inputs="image", outputs="text")
65
+ iface.launch()
66
+
67
+
68
+ def resize_img(img):
69
+ dim = (150, 150)
70
+ new_img = cv2.resize(img, dim)
71
+ return new_img
72
+
73
+ if __name__=="__main__":
74
+ coin_datadir_train = '../coins-dataset/classified/train'
75
+ coin_datadir_test = '../coins-dataset/classified/test'
76
+ note_datadir_train = '../banknote-dataset/classified/train'
77
+ note_datadir_test = '../banknote-dataset/classified/test'
78
+
79
+ categories = ['1c', '2c', '5c', '10c', '20c', '50c', '1e', '2e', '5e', '10e', '20e', '50e']
80
+ coin_index = 8
81
+
82
+ training_data = []
83
+
84
+ for category in categories[:coin_index]:
85
+ path = os.path.join(coin_datadir_train, category)
86
+ label = 0
87
+ for img in os.listdir(path):
88
+ img_array = cv2.imread(os.path.join(path, img))
89
+ training_data.append([img_array, label])
90
+
91
+ for category in categories[coin_index:]:
92
+ path = os.path.join(note_datadir_train, category)
93
+ label = 1
94
+ for img in os.listdir(path):
95
+ img_array = resize_img(cv2.imread(os.path.join(path, img)))
96
+ training_data.append([img_array, label])
97
+
98
+
99
+ testing_data = []
100
+
101
+ for category in categories[:coin_index]:
102
+ path = os.path.join(coin_datadir_test, category)
103
+ label = 0
104
+ for img in os.listdir(path):
105
+ img_array = cv2.imread(os.path.join(path, img))
106
+ testing_data.append([img_array, label])
107
+
108
+ for category in categories[coin_index:]:
109
+ path = os.path.join(note_datadir_test, category)
110
+ label = 1
111
+ for img in os.listdir(path):
112
+ img_array = resize_img(cv2.imread(os.path.join(path, img)))
113
+ testing_data.append([img_array, label])
114
+
115
+
116
+ x_train = []
117
+ y_train = []
118
+
119
+ for features, label in training_data:
120
+ x_train.append(features)
121
+ y_train.append(label)
122
+
123
+ x_train = np.array(x_train)
124
+
125
+
126
+ x_test = []
127
+ y_test = []
128
+
129
+ for features, label in testing_data:
130
+ x_test.append(features)
131
+ y_test.append(label)
132
+
133
+ x_test = np.array(x_test)
134
+ main()