|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
from functools import lru_cache |
|
import os |
|
|
|
os.system( |
|
"cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/" |
|
) |
|
|
|
import k2 |
|
import sherpa |
|
|
|
|
|
sample_rate = 16000 |
|
|
|
|
|
@lru_cache(maxsize=30) |
|
def get_pretrained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
if repo_id in chinese_models: |
|
return chinese_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in english_models: |
|
return english_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in chinese_english_mixed_models: |
|
return chinese_english_mixed_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in tibetan_models: |
|
return tibetan_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in arabic_models: |
|
return arabic_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
elif repo_id in german_models: |
|
return german_models[repo_id]( |
|
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths |
|
) |
|
else: |
|
raise ValueError(f"Unsupported repo_id: {repo_id}") |
|
|
|
|
|
def _get_nn_model_filename( |
|
repo_id: str, |
|
filename: str, |
|
subfolder: str = "exp", |
|
) -> str: |
|
nn_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return nn_model_filename |
|
|
|
|
|
def _get_bpe_model_filename( |
|
repo_id: str, |
|
filename: str = "bpe.model", |
|
subfolder: str = "data/lang_bpe_500", |
|
) -> str: |
|
bpe_model_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return bpe_model_filename |
|
|
|
|
|
def _get_token_filename( |
|
repo_id: str, |
|
filename: str = "tokens.txt", |
|
subfolder: str = "data/lang_char", |
|
) -> str: |
|
token_filename = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=filename, |
|
subfolder=subfolder, |
|
) |
|
return token_filename |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_aishell2_pretrained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
|
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", |
|
|
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_gigaspeech_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit-iter-3488000-avg-20.pt", |
|
) |
|
tokens = "./giga-tokens.txt" |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_librispeech_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
) -> sherpa.OfflineRecognizer: |
|
assert repo_id in [ |
|
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", |
|
], repo_id |
|
|
|
filename = "cpu_jit.pt" |
|
if ( |
|
repo_id |
|
== "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" |
|
): |
|
filename = "cpu_jit-torch-1.10.0.pt" |
|
|
|
if ( |
|
repo_id |
|
== "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" |
|
): |
|
filename = "cpu_jit-torch-1.10.pt" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_wenetspeech_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_chinese_english_mixed_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", |
|
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh", |
|
], repo_id |
|
|
|
if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": |
|
filename = "cpu_jit.pt" |
|
subfolder = "data/lang_char" |
|
elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": |
|
filename = "cpu_jit-epoch-11-avg-1.pt" |
|
subfolder = "data/lang_char_bpe" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_alimeeting_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit_torch_1.7.1.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_wenet_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"csukuangfj/wenet-chinese-model", |
|
"csukuangfj/wenet-english-model", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="final.zip", |
|
subfolder=".", |
|
) |
|
tokens = _get_token_filename( |
|
repo_id=repo_id, |
|
filename="units.txt", |
|
subfolder=".", |
|
) |
|
|
|
feat_config = sherpa.FeatureConfig(normalize_samples=False) |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_aidatatang_200zh_pretrained_mode( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit_torch.1.7.1.pt", |
|
) |
|
tokens = _get_token_filename(repo_id=repo_id) |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_tibetan_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", |
|
], repo_id |
|
|
|
filename = "cpu_jit.pt" |
|
if ( |
|
repo_id |
|
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" |
|
): |
|
filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt" |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename=filename, |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_arabic_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="cpu_jit.pt", |
|
) |
|
|
|
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000") |
|
|
|
feat_config = sherpa.FeatureConfig() |
|
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate |
|
feat_config.fbank_opts.mel_opts.num_bins = 80 |
|
feat_config.fbank_opts.frame_opts.dither = 0 |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
feat_config=feat_config, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
@lru_cache(maxsize=10) |
|
def _get_german_pre_trained_model( |
|
repo_id: str, |
|
decoding_method: str, |
|
num_active_paths: int, |
|
): |
|
assert repo_id in [ |
|
"csukuangfj/wav2vec2.0-torchaudio", |
|
], repo_id |
|
|
|
nn_model = _get_nn_model_filename( |
|
repo_id=repo_id, |
|
filename="voxpopuli_asr_base_10k_de.pt", |
|
subfolder=".", |
|
) |
|
|
|
tokens = _get_token_filename( |
|
repo_id=repo_id, |
|
filename="tokens-de.txt", |
|
subfolder=".", |
|
) |
|
|
|
config = sherpa.OfflineRecognizerConfig( |
|
nn_model=nn_model, |
|
tokens=tokens, |
|
use_gpu=False, |
|
decoding_method=decoding_method, |
|
num_active_paths=num_active_paths, |
|
) |
|
|
|
recognizer = sherpa.OfflineRecognizer(config) |
|
|
|
return recognizer |
|
|
|
|
|
chinese_models = { |
|
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, |
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, |
|
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, |
|
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, |
|
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, |
|
"csukuangfj/wenet-chinese-model": _get_wenet_model, |
|
} |
|
|
|
english_models = { |
|
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, |
|
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_librispeech_pre_trained_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_librispeech_pre_trained_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_librispeech_pre_trained_model, |
|
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_librispeech_pre_trained_model, |
|
"csukuangfj/wenet-english-model": _get_wenet_model, |
|
} |
|
|
|
chinese_english_mixed_models = { |
|
"ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model, |
|
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, |
|
} |
|
|
|
tibetan_models = { |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, |
|
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, |
|
} |
|
|
|
arabic_models = { |
|
"AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, |
|
} |
|
|
|
german_models = { |
|
"csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model, |
|
} |
|
|
|
all_models = { |
|
**chinese_models, |
|
**english_models, |
|
**chinese_english_mixed_models, |
|
**tibetan_models, |
|
**arabic_models, |
|
**german_models, |
|
} |
|
|
|
language_to_models = { |
|
"Chinese": list(chinese_models.keys()), |
|
"English": list(english_models.keys()), |
|
"Chinese+English": list(chinese_english_mixed_models.keys()), |
|
"Tibetan": list(tibetan_models.keys()), |
|
"Arabic": list(arabic_models.keys()), |
|
"German": list(german_models.keys()), |
|
} |
|
|