Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,110 Bytes
b887ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm.auto import tqdm
from utils.word_vectorizer import WordVectorizer, POS_enumerator
from utils.motion_process import recover_from_ric
class Text2MotionDataset(data.Dataset):
"""
Dataset for Text2Motion generation task.
"""
data_root = ""
min_motion_len = 40
joints_num = None
dim_pose = None
max_motion_length = 196
def __init__(self, opt, split, mode="train", accelerator=None):
self.max_text_len = getattr(opt, "max_text_len", 20)
self.unit_length = getattr(opt, "unit_length", 4)
self.mode = mode
motion_dir = pjoin(self.data_root, "new_joint_vecs")
text_dir = pjoin(self.data_root, "texts")
if mode not in ["train", "eval", "gt_eval", "xyz_gt", "hml_gt"]:
raise ValueError(
f"Mode '{mode}' is not supported. Please use one of: 'train', 'eval', 'gt_eval', 'xyz_gt','hml_gt'."
)
mean, std = None, None
if mode == "gt_eval":
print(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy"))
# used by T2M models (including evaluators)
mean = np.load(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_mean.npy"))
std = np.load(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy"))
elif mode in ["eval"]:
print(pjoin(opt.meta_dir, "std.npy"))
# used by our models during inference
mean = np.load(pjoin(opt.meta_dir, "mean.npy"))
std = np.load(pjoin(opt.meta_dir, "std.npy"))
else:
# used by our models during train
mean = np.load(pjoin(self.data_root, "Mean.npy"))
std = np.load(pjoin(self.data_root, "Std.npy"))
if mode == "eval":
# used by T2M models (including evaluators)
# this is to translate ours norms to theirs
self.mean_for_eval = np.load(
pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_mean.npy")
)
self.std_for_eval = np.load(
pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy")
)
if mode in ["gt_eval", "eval"]:
self.w_vectorizer = WordVectorizer(opt.glove_dir, "our_vab")
data_dict = {}
id_list = []
split_file = pjoin(self.data_root, f"{split}.txt")
with cs.open(split_file, "r") as f:
for line in f.readlines():
id_list.append(line.strip())
if opt.debug == True:
id_list = id_list[:1000]
new_name_list = []
length_list = []
for name in tqdm(
id_list,
disable=(
not accelerator.is_local_main_process
if accelerator is not None
else False
),
):
motion = np.load(pjoin(motion_dir, name + ".npy"))
if (len(motion)) < self.min_motion_len or (len(motion) >= 200):
continue
text_data = []
flag = False
with cs.open(pjoin(text_dir, name + ".txt")) as f:
for line in f.readlines():
text_dict = {}
line_split = line.strip().split("#")
caption = line_split[0]
try:
tokens = line_split[1].split(" ")
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
except:
tokens = ["a/NUM", "a/NUM"]
f_tag = 0.0
to_tag = 8.0
text_dict["caption"] = caption
text_dict["tokens"] = tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
n_motion = motion[int(f_tag * 20) : int(to_tag * 20)]
if (len(n_motion)) < self.min_motion_len or (
len(n_motion) >= 200
):
continue
new_name = random.choice("ABCDEFGHIJKLMNOPQRSTUVW") + "_" + name
while new_name in data_dict:
new_name = (
random.choice("ABCDEFGHIJKLMNOPQRSTUVW") + "_" + name
)
data_dict[new_name] = {
"motion": n_motion,
"length": len(n_motion),
"text": [text_dict],
}
new_name_list.append(new_name)
length_list.append(len(n_motion))
if flag:
data_dict[name] = {
"motion": motion,
"length": len(motion),
"text": text_data,
}
new_name_list.append(name)
length_list.append(len(motion))
name_list, length_list = zip(
*sorted(zip(new_name_list, length_list), key=lambda x: x[1])
)
if mode == "train":
if opt.dataset_name != "amass":
joints_num = self.joints_num
# root_rot_velocity (B, seq_len, 1)
std[0:1] = std[0:1] / opt.feat_bias
# root_linear_velocity (B, seq_len, 2)
std[1:3] = std[1:3] / opt.feat_bias
# root_y (B, seq_len, 1)
std[3:4] = std[3:4] / opt.feat_bias
# ric_data (B, seq_len, (joint_num - 1)*3)
std[4 : 4 + (joints_num - 1) * 3] = (
std[4 : 4 + (joints_num - 1) * 3] / 1.0
)
# rot_data (B, seq_len, (joint_num - 1)*6)
std[4 + (joints_num - 1) * 3 : 4 + (joints_num - 1) * 9] = (
std[4 + (joints_num - 1) * 3 : 4 + (joints_num - 1) * 9] / 1.0
)
# local_velocity (B, seq_len, joint_num*3)
std[
4 + (joints_num - 1) * 9 : 4 + (joints_num - 1) * 9 + joints_num * 3
] = (
std[
4
+ (joints_num - 1) * 9 : 4
+ (joints_num - 1) * 9
+ joints_num * 3
]
/ 1.0
)
# foot contact (B, seq_len, 4)
std[4 + (joints_num - 1) * 9 + joints_num * 3 :] = (
std[4 + (joints_num - 1) * 9 + joints_num * 3 :] / opt.feat_bias
)
assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]
if accelerator is not None and accelerator.is_main_process:
np.save(pjoin(opt.meta_dir, "mean.npy"), mean)
np.save(pjoin(opt.meta_dir, "std.npy"), std)
self.mean = mean
self.std = std
self.data_dict = data_dict
self.name_list = name_list
def inv_transform(self, data):
return data * self.std + self.mean
def __len__(self):
return len(self.data_dict)
def __getitem__(self, idx):
data = self.data_dict[self.name_list[idx]]
motion, m_length, text_list = data["motion"], data["length"], data["text"]
# Randomly select a caption
text_data = random.choice(text_list)
caption = text_data["caption"]
"Z Normalization"
if self.mode not in ["xyz_gt", "hml_gt"]:
motion = (motion - self.mean) / self.std
"crop motion"
if self.mode in ["eval", "gt_eval"]:
# Crop the motions in to times of 4, and introduce small variations
if self.unit_length < 10:
coin2 = np.random.choice(["single", "single", "double"])
else:
coin2 = "single"
if coin2 == "double":
m_length = (m_length // self.unit_length - 1) * self.unit_length
elif coin2 == "single":
m_length = (m_length // self.unit_length) * self.unit_length
idx = random.randint(0, len(motion) - m_length)
motion = motion[idx : idx + m_length]
elif m_length >= self.max_motion_length:
idx = random.randint(0, len(motion) - self.max_motion_length)
motion = motion[idx : idx + self.max_motion_length]
m_length = self.max_motion_length
"pad motion"
if m_length < self.max_motion_length:
motion = np.concatenate(
[
motion,
np.zeros((self.max_motion_length - m_length, motion.shape[1])),
],
axis=0,
)
assert len(motion) == self.max_motion_length
if self.mode in ["gt_eval", "eval"]:
"word embedding for text-to-motion evaluation"
tokens = text_data["tokens"]
if len(tokens) < self.max_text_len:
# pad with "unk"
tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"]
sent_len = len(tokens)
tokens = tokens + ["unk/OTHER"] * (self.max_text_len + 2 - sent_len)
else:
# crop
tokens = tokens[: self.max_text_len]
tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"]
sent_len = len(tokens)
pos_one_hots = []
word_embeddings = []
for token in tokens:
word_emb, pos_oh = self.w_vectorizer[token]
pos_one_hots.append(pos_oh[None, :])
word_embeddings.append(word_emb[None, :])
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
word_embeddings = np.concatenate(word_embeddings, axis=0)
return (
word_embeddings,
pos_one_hots,
caption,
sent_len,
motion,
m_length,
"_".join(tokens),
)
elif self.mode in ["xyz_gt"]:
"Convert motion hml representation to skeleton points xyz"
# 1. Use kn to get the keypoints position (the padding position after kn is all zero)
motion = torch.from_numpy(motion).float()
pred_joints = recover_from_ric(
motion, self.joints_num
) # (nframe, njoints, 3)
# 2. Put on Floor (Y axis)
floor_height = pred_joints.min(dim=0)[0].min(dim=0)[0][1]
pred_joints[:, :, 1] -= floor_height
return pred_joints
return caption, motion, m_length
class HumanML3D(Text2MotionDataset):
def __init__(self, opt, split="train", mode="train", accelerator=None):
self.data_root = "./data/HumanML3D"
self.min_motion_len = 40
self.joints_num = 22
self.dim_pose = 263
self.max_motion_length = 196
if accelerator:
accelerator.print(
"\n Loading %s mode HumanML3D %s dataset ..." % (mode, split)
)
else:
print("\n Loading %s mode HumanML3D dataset ..." % mode)
super(HumanML3D, self).__init__(opt, split, mode, accelerator)
class KIT(Text2MotionDataset):
def __init__(self, opt, split="train", mode="train", accelerator=None):
self.data_root = "./data/KIT-ML"
self.min_motion_len = 24
self.joints_num = 21
self.dim_pose = 251
self.max_motion_length = 196
if accelerator:
accelerator.print("\n Loading %s mode KIT %s dataset ..." % (mode, split))
else:
print("\n Loading %s mode KIT dataset ..." % mode)
super(KIT, self).__init__(opt, split, mode, accelerator)
|