File size: 12,110 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm.auto import tqdm
from utils.word_vectorizer import WordVectorizer, POS_enumerator
from utils.motion_process import recover_from_ric


class Text2MotionDataset(data.Dataset):
    """
    Dataset for Text2Motion generation task.
    """

    data_root = ""
    min_motion_len = 40
    joints_num = None
    dim_pose = None
    max_motion_length = 196

    def __init__(self, opt, split, mode="train", accelerator=None):
        self.max_text_len = getattr(opt, "max_text_len", 20)
        self.unit_length = getattr(opt, "unit_length", 4)
        self.mode = mode
        motion_dir = pjoin(self.data_root, "new_joint_vecs")
        text_dir = pjoin(self.data_root, "texts")

        if mode not in ["train", "eval", "gt_eval", "xyz_gt", "hml_gt"]:
            raise ValueError(
                f"Mode '{mode}' is not supported. Please use one of: 'train', 'eval', 'gt_eval', 'xyz_gt','hml_gt'."
            )

        mean, std = None, None
        if mode == "gt_eval":
            print(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy"))
            # used by T2M models (including evaluators)
            mean = np.load(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_mean.npy"))
            std = np.load(pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy"))
        elif mode in ["eval"]:
            print(pjoin(opt.meta_dir, "std.npy"))
            # used by our models during inference
            mean = np.load(pjoin(opt.meta_dir, "mean.npy"))
            std = np.load(pjoin(opt.meta_dir, "std.npy"))
        else:
            # used by our models during train
            mean = np.load(pjoin(self.data_root, "Mean.npy"))
            std = np.load(pjoin(self.data_root, "Std.npy"))

        if mode == "eval":
            # used by T2M models (including evaluators)
            # this is to translate ours norms to theirs
            self.mean_for_eval = np.load(
                pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_mean.npy")
            )
            self.std_for_eval = np.load(
                pjoin(opt.eval_meta_dir, f"{opt.dataset_name}_std.npy")
            )
        if mode in ["gt_eval", "eval"]:
            self.w_vectorizer = WordVectorizer(opt.glove_dir, "our_vab")

        data_dict = {}
        id_list = []
        split_file = pjoin(self.data_root, f"{split}.txt")
        with cs.open(split_file, "r") as f:
            for line in f.readlines():
                id_list.append(line.strip())

        if opt.debug == True:
            id_list = id_list[:1000]

        new_name_list = []
        length_list = []
        for name in tqdm(
            id_list,
            disable=(
                not accelerator.is_local_main_process
                if accelerator is not None
                else False
            ),
        ):
            motion = np.load(pjoin(motion_dir, name + ".npy"))
            if (len(motion)) < self.min_motion_len or (len(motion) >= 200):
                continue
            text_data = []
            flag = False
            with cs.open(pjoin(text_dir, name + ".txt")) as f:
                for line in f.readlines():
                    text_dict = {}
                    line_split = line.strip().split("#")
                    caption = line_split[0]
                    try:
                        tokens = line_split[1].split(" ")
                        f_tag = float(line_split[2])
                        to_tag = float(line_split[3])
                        f_tag = 0.0 if np.isnan(f_tag) else f_tag
                        to_tag = 0.0 if np.isnan(to_tag) else to_tag
                    except:
                        tokens = ["a/NUM", "a/NUM"]
                        f_tag = 0.0
                        to_tag = 8.0
                    text_dict["caption"] = caption
                    text_dict["tokens"] = tokens
                    if f_tag == 0.0 and to_tag == 0.0:
                        flag = True
                        text_data.append(text_dict)
                    else:
                        n_motion = motion[int(f_tag * 20) : int(to_tag * 20)]
                        if (len(n_motion)) < self.min_motion_len or (
                            len(n_motion) >= 200
                        ):
                            continue
                        new_name = random.choice("ABCDEFGHIJKLMNOPQRSTUVW") + "_" + name
                        while new_name in data_dict:
                            new_name = (
                                random.choice("ABCDEFGHIJKLMNOPQRSTUVW") + "_" + name
                            )
                        data_dict[new_name] = {
                            "motion": n_motion,
                            "length": len(n_motion),
                            "text": [text_dict],
                        }
                        new_name_list.append(new_name)
                        length_list.append(len(n_motion))
            if flag:
                data_dict[name] = {
                    "motion": motion,
                    "length": len(motion),
                    "text": text_data,
                }
                new_name_list.append(name)
                length_list.append(len(motion))

        name_list, length_list = zip(
            *sorted(zip(new_name_list, length_list), key=lambda x: x[1])
        )

        if mode == "train":
            if opt.dataset_name != "amass":
                joints_num = self.joints_num
                # root_rot_velocity (B, seq_len, 1)
                std[0:1] = std[0:1] / opt.feat_bias
                # root_linear_velocity (B, seq_len, 2)
                std[1:3] = std[1:3] / opt.feat_bias
                # root_y (B, seq_len, 1)
                std[3:4] = std[3:4] / opt.feat_bias
                # ric_data (B, seq_len, (joint_num - 1)*3)
                std[4 : 4 + (joints_num - 1) * 3] = (
                    std[4 : 4 + (joints_num - 1) * 3] / 1.0
                )
                # rot_data (B, seq_len, (joint_num - 1)*6)
                std[4 + (joints_num - 1) * 3 : 4 + (joints_num - 1) * 9] = (
                    std[4 + (joints_num - 1) * 3 : 4 + (joints_num - 1) * 9] / 1.0
                )
                # local_velocity (B, seq_len, joint_num*3)
                std[
                    4 + (joints_num - 1) * 9 : 4 + (joints_num - 1) * 9 + joints_num * 3
                ] = (
                    std[
                        4
                        + (joints_num - 1) * 9 : 4
                        + (joints_num - 1) * 9
                        + joints_num * 3
                    ]
                    / 1.0
                )
                # foot contact (B, seq_len, 4)
                std[4 + (joints_num - 1) * 9 + joints_num * 3 :] = (
                    std[4 + (joints_num - 1) * 9 + joints_num * 3 :] / opt.feat_bias
                )

                assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]

            if accelerator is not None and accelerator.is_main_process:
                np.save(pjoin(opt.meta_dir, "mean.npy"), mean)
                np.save(pjoin(opt.meta_dir, "std.npy"), std)

        self.mean = mean
        self.std = std
        self.data_dict = data_dict
        self.name_list = name_list

    def inv_transform(self, data):
        return data * self.std + self.mean

    def __len__(self):
        return len(self.data_dict)

    def __getitem__(self, idx):
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data["motion"], data["length"], data["text"]

        # Randomly select a caption
        text_data = random.choice(text_list)
        caption = text_data["caption"]

        "Z Normalization"
        if self.mode not in ["xyz_gt", "hml_gt"]:
            motion = (motion - self.mean) / self.std

        "crop motion"
        if self.mode in ["eval", "gt_eval"]:
            # Crop the motions in to times of 4, and introduce small variations
            if self.unit_length < 10:
                coin2 = np.random.choice(["single", "single", "double"])
            else:
                coin2 = "single"
            if coin2 == "double":
                m_length = (m_length // self.unit_length - 1) * self.unit_length
            elif coin2 == "single":
                m_length = (m_length // self.unit_length) * self.unit_length
            idx = random.randint(0, len(motion) - m_length)
            motion = motion[idx : idx + m_length]
        elif m_length >= self.max_motion_length:
            idx = random.randint(0, len(motion) - self.max_motion_length)
            motion = motion[idx : idx + self.max_motion_length]
            m_length = self.max_motion_length

        "pad motion"
        if m_length < self.max_motion_length:
            motion = np.concatenate(
                [
                    motion,
                    np.zeros((self.max_motion_length - m_length, motion.shape[1])),
                ],
                axis=0,
            )
        assert len(motion) == self.max_motion_length

        if self.mode in ["gt_eval", "eval"]:
            "word embedding for text-to-motion evaluation"
            tokens = text_data["tokens"]
            if len(tokens) < self.max_text_len:
                # pad with "unk"
                tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"]
                sent_len = len(tokens)
                tokens = tokens + ["unk/OTHER"] * (self.max_text_len + 2 - sent_len)
            else:
                # crop
                tokens = tokens[: self.max_text_len]
                tokens = ["sos/OTHER"] + tokens + ["eos/OTHER"]
                sent_len = len(tokens)
            pos_one_hots = []
            word_embeddings = []
            for token in tokens:
                word_emb, pos_oh = self.w_vectorizer[token]
                pos_one_hots.append(pos_oh[None, :])
                word_embeddings.append(word_emb[None, :])
            pos_one_hots = np.concatenate(pos_one_hots, axis=0)
            word_embeddings = np.concatenate(word_embeddings, axis=0)
            return (
                word_embeddings,
                pos_one_hots,
                caption,
                sent_len,
                motion,
                m_length,
                "_".join(tokens),
            )
        elif self.mode in ["xyz_gt"]:
            "Convert motion hml representation to skeleton points xyz"
            # 1. Use kn to get the keypoints position (the padding position after kn is all zero)
            motion = torch.from_numpy(motion).float()
            pred_joints = recover_from_ric(
                motion, self.joints_num
            )  # (nframe, njoints, 3)

            # 2. Put on Floor (Y axis)
            floor_height = pred_joints.min(dim=0)[0].min(dim=0)[0][1]
            pred_joints[:, :, 1] -= floor_height
            return pred_joints

        return caption, motion, m_length


class HumanML3D(Text2MotionDataset):
    def __init__(self, opt, split="train", mode="train", accelerator=None):
        self.data_root = "./data/HumanML3D"
        self.min_motion_len = 40
        self.joints_num = 22
        self.dim_pose = 263
        self.max_motion_length = 196
        if accelerator:
            accelerator.print(
                "\n Loading %s mode HumanML3D %s dataset ..." % (mode, split)
            )
        else:
            print("\n Loading %s mode HumanML3D dataset ..." % mode)
        super(HumanML3D, self).__init__(opt, split, mode, accelerator)


class KIT(Text2MotionDataset):
    def __init__(self, opt, split="train", mode="train", accelerator=None):
        self.data_root = "./data/KIT-ML"
        self.min_motion_len = 24
        self.joints_num = 21
        self.dim_pose = 251
        self.max_motion_length = 196
        if accelerator:
            accelerator.print("\n Loading %s mode KIT %s dataset ..." % (mode, split))
        else:
            print("\n Loading %s mode KIT dataset ..." % mode)
        super(KIT, self).__init__(opt, split, mode, accelerator)