File size: 2,063 Bytes
5f011f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8287e38
5f011f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3831fc
 
5f011f5
 
 
 
 
 
 
 
fbb89ca
5f011f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
from io import BytesIO
from PIL import Image as PILIMAGE
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer

#Selecting device based on availability of GPUs
device = "cuda" if torch.cuda.is_available() else "cpu"
    
#Defining model, processor and tokenizer
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

    
#Loading the data
photos = pd.read_csv("./items_data.csv")
photo_features = np.load("./features.npy")
photo_ids = pd.read_csv("./photo_ids.csv")
photo_ids = list(photo_ids['photo_id'])
    
def find_best_matches(text):
    
    #Inference
    with torch.no_grad():
        # Encode and normalize the description using CLIP
        inputs = tokenizer([text],  padding=True, return_tensors="pt")
        inputs = processor(text=[text], images=None, return_tensors="pt", padding=True)
    text_encoded =  model.get_text_features(**inputs).detach().numpy()
  
    
    # Finding Cosine similarity
    similarities = list((text_encoded @ photo_features.T).squeeze(0))
    
    #Block of code for displaying top 3 best matches (images)
    matched_images = []
    for i in range(3):
      idx = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)[i][1]
      photo_id = photo_ids[idx]
      photo_data = photos[photos["Uniq Id"] == photo_id].iloc[0]
      response = requests.get(photo_data["Image"] + "?w=640")
      img = PILIMAGE.open(BytesIO(response.content))
      matched_images.append(img)
    return matched_images
    
    
#Gradio app     
iface = gr.Interface(fn=find_best_matches, inputs=[gr.inputs.Textbox(lines=1, label="Text query", placeholder="Introduce the search text...",)],
            theme = "dark",
            outputs=gr.outputs.Carousel([gr.outputs.Image(type="pil")]),
            enable_queue=True).launch()