abhinav-joshi
commited on
Commit
·
3f2777e
1
Parent(s):
a92fba7
update submission
Browse files- app.py +102 -73
- src/about.py +3 -27
- src/display/utils.py +25 -18
app.py
CHANGED
@@ -168,33 +168,33 @@ with demo:
|
|
168 |
elem_id="column-select",
|
169 |
interactive=True,
|
170 |
)
|
171 |
-
with gr.Row():
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
with gr.Column(min_width=320):
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
leaderboard_table = gr.components.Dataframe(
|
200 |
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
@@ -217,30 +217,30 @@ with demo:
|
|
217 |
[
|
218 |
hidden_leaderboard_table_for_search,
|
219 |
shown_columns,
|
220 |
-
filter_columns_type,
|
221 |
-
filter_columns_precision,
|
222 |
-
filter_columns_size,
|
223 |
-
deleted_models_visibility,
|
224 |
search_bar,
|
225 |
],
|
226 |
leaderboard_table,
|
227 |
)
|
228 |
for selector in [
|
229 |
shown_columns,
|
230 |
-
filter_columns_type,
|
231 |
-
filter_columns_precision,
|
232 |
-
filter_columns_size,
|
233 |
-
deleted_models_visibility,
|
234 |
]:
|
235 |
selector.change(
|
236 |
update_table,
|
237 |
[
|
238 |
hidden_leaderboard_table_for_search,
|
239 |
shown_columns,
|
240 |
-
filter_columns_type,
|
241 |
-
filter_columns_precision,
|
242 |
-
filter_columns_size,
|
243 |
-
deleted_models_visibility,
|
244 |
search_bar,
|
245 |
],
|
246 |
leaderboard_table,
|
@@ -290,53 +290,82 @@ with demo:
|
|
290 |
datatype=EVAL_TYPES,
|
291 |
row_count=5,
|
292 |
)
|
293 |
-
with gr.Row():
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
with gr.Row():
|
297 |
with gr.Column():
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
multiselect=False,
|
304 |
-
value=None,
|
305 |
-
interactive=True,
|
306 |
-
)
|
307 |
-
|
308 |
with gr.Column():
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
multiselect=False,
|
313 |
-
value="float16",
|
314 |
-
interactive=True,
|
315 |
-
)
|
316 |
-
weight_type = gr.Dropdown(
|
317 |
-
choices=[i.value.name for i in WeightType],
|
318 |
-
label="Weights type",
|
319 |
-
multiselect=False,
|
320 |
-
value="Original",
|
321 |
-
interactive=True,
|
322 |
-
)
|
323 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
324 |
|
325 |
submit_button = gr.Button("Submit Eval")
|
326 |
submission_result = gr.Markdown()
|
327 |
submit_button.click(
|
328 |
add_new_eval,
|
329 |
[
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
336 |
],
|
337 |
submission_result,
|
338 |
)
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
with gr.Row():
|
341 |
with gr.Accordion("📙 Citation", open=False):
|
342 |
citation_button = gr.Textbox(
|
|
|
168 |
elem_id="column-select",
|
169 |
interactive=True,
|
170 |
)
|
171 |
+
# with gr.Row():
|
172 |
+
# deleted_models_visibility = gr.Checkbox(
|
173 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
174 |
+
# )
|
175 |
+
# with gr.Column(min_width=320):
|
176 |
+
# # with gr.Box(elem_id="box-filter"):
|
177 |
+
# filter_columns_type = gr.CheckboxGroup(
|
178 |
+
# label="Model types",
|
179 |
+
# choices=[t.to_str() for t in ModelType],
|
180 |
+
# value=[t.to_str() for t in ModelType],
|
181 |
+
# interactive=True,
|
182 |
+
# elem_id="filter-columns-type",
|
183 |
+
# )
|
184 |
+
# filter_columns_precision = gr.CheckboxGroup(
|
185 |
+
# label="Precision",
|
186 |
+
# choices=[i.value.name for i in Precision],
|
187 |
+
# value=[i.value.name for i in Precision],
|
188 |
+
# interactive=True,
|
189 |
+
# elem_id="filter-columns-precision",
|
190 |
+
# )
|
191 |
+
# filter_columns_size = gr.CheckboxGroup(
|
192 |
+
# label="Model sizes (in billions of parameters)",
|
193 |
+
# choices=list(NUMERIC_INTERVALS.keys()),
|
194 |
+
# value=list(NUMERIC_INTERVALS.keys()),
|
195 |
+
# interactive=True,
|
196 |
+
# elem_id="filter-columns-size",
|
197 |
+
# )
|
198 |
|
199 |
leaderboard_table = gr.components.Dataframe(
|
200 |
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
217 |
[
|
218 |
hidden_leaderboard_table_for_search,
|
219 |
shown_columns,
|
220 |
+
# filter_columns_type,
|
221 |
+
# filter_columns_precision,
|
222 |
+
# filter_columns_size,
|
223 |
+
# deleted_models_visibility,
|
224 |
search_bar,
|
225 |
],
|
226 |
leaderboard_table,
|
227 |
)
|
228 |
for selector in [
|
229 |
shown_columns,
|
230 |
+
# filter_columns_type,
|
231 |
+
# filter_columns_precision,
|
232 |
+
# filter_columns_size,
|
233 |
+
# deleted_models_visibility,
|
234 |
]:
|
235 |
selector.change(
|
236 |
update_table,
|
237 |
[
|
238 |
hidden_leaderboard_table_for_search,
|
239 |
shown_columns,
|
240 |
+
# filter_columns_type,
|
241 |
+
# filter_columns_precision,
|
242 |
+
# filter_columns_size,
|
243 |
+
# deleted_models_visibility,
|
244 |
search_bar,
|
245 |
],
|
246 |
leaderboard_table,
|
|
|
290 |
datatype=EVAL_TYPES,
|
291 |
row_count=5,
|
292 |
)
|
293 |
+
# with gr.Row():
|
294 |
+
# gr.Markdown("# ✉️✨ Submit your Results here!", elem_classes="markdown-text")
|
295 |
+
|
296 |
+
# with gr.Row():
|
297 |
+
# with gr.Column():
|
298 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
299 |
+
# revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
300 |
+
# model_type = gr.Dropdown(
|
301 |
+
# choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
302 |
+
# label="Model type",
|
303 |
+
# multiselect=False,
|
304 |
+
# value=None,
|
305 |
+
# interactive=True,
|
306 |
+
# )
|
307 |
+
|
308 |
+
# with gr.Column():
|
309 |
+
# precision = gr.Dropdown(
|
310 |
+
# choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
311 |
+
# label="Precision",
|
312 |
+
# multiselect=False,
|
313 |
+
# value="float16",
|
314 |
+
# interactive=True,
|
315 |
+
# )
|
316 |
+
# weight_type = gr.Dropdown(
|
317 |
+
# choices=[i.value.name for i in WeightType],
|
318 |
+
# label="Weights type",
|
319 |
+
# multiselect=False,
|
320 |
+
# value="Original",
|
321 |
+
# interactive=True,
|
322 |
+
# )
|
323 |
+
# base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
324 |
+
|
325 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
326 |
with gr.Row():
|
327 |
with gr.Column():
|
328 |
+
method_name_textbox = gr.Textbox(label="Method name")
|
329 |
+
# llama, phi
|
330 |
+
model_family_radio = gr.Radio(["llama", "phi"], value="llama", label="Model family")
|
331 |
+
forget_rate_radio = gr.Radio(["1%", "5%", "10%"], value="10%", label="Forget rate")
|
332 |
+
url_textbox = gr.Textbox(label="Url to model information")
|
|
|
|
|
|
|
|
|
|
|
333 |
with gr.Column():
|
334 |
+
organisation = gr.Textbox(label="Organisation")
|
335 |
+
mail = gr.Textbox(label="Contact email")
|
336 |
+
file_output = gr.File()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
submit_button = gr.Button("Submit Eval")
|
339 |
submission_result = gr.Markdown()
|
340 |
submit_button.click(
|
341 |
add_new_eval,
|
342 |
[
|
343 |
+
method_name_textbox,
|
344 |
+
model_family_radio,
|
345 |
+
forget_rate_radio,
|
346 |
+
url_textbox,
|
347 |
+
file_output,
|
348 |
+
organisation,
|
349 |
+
mail,
|
350 |
],
|
351 |
submission_result,
|
352 |
)
|
353 |
|
354 |
+
# submit_button = gr.Button("Submit Eval")
|
355 |
+
# submission_result = gr.Markdown()
|
356 |
+
# submit_button.click(
|
357 |
+
# add_new_eval,
|
358 |
+
# [
|
359 |
+
# model_name_textbox,
|
360 |
+
# base_model_name_textbox,
|
361 |
+
# revision_name_textbox,
|
362 |
+
# precision,
|
363 |
+
# weight_type,
|
364 |
+
# model_type,
|
365 |
+
# ],
|
366 |
+
# submission_result,
|
367 |
+
# )
|
368 |
+
|
369 |
with gr.Row():
|
370 |
with gr.Accordion("📙 Citation", open=False):
|
371 |
citation_button = gr.Textbox(
|
src/about.py
CHANGED
@@ -30,7 +30,7 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
30 |
|
31 |
|
32 |
# Your leaderboard name
|
33 |
-
TITLE = """<h1 align="center" id="space-title">IL-TUR
|
34 |
|
35 |
# What does your leaderboard evaluate?
|
36 |
INTRODUCTION_TEXT = """
|
@@ -47,33 +47,9 @@ To reproduce our results, here is the commands you can run:
|
|
47 |
"""
|
48 |
|
49 |
EVALUATION_QUEUE_TEXT = """
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
```python
|
54 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
55 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
56 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
58 |
-
```
|
59 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
60 |
-
|
61 |
-
Note: make sure your model is public!
|
62 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
63 |
-
|
64 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
65 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
66 |
-
|
67 |
-
### 3) Make sure your model has an open license!
|
68 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
69 |
-
|
70 |
-
### 4) Fill up your model card
|
71 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
72 |
-
|
73 |
-
## In case of model failure
|
74 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
75 |
-
Make sure you have followed the above steps first.
|
76 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
77 |
"""
|
78 |
|
79 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
|
30 |
|
31 |
|
32 |
# Your leaderboard name
|
33 |
+
TITLE = """<h1 align="center" id="space-title">IL-TUR Leaderboard</h1>"""
|
34 |
|
35 |
# What does your leaderboard evaluate?
|
36 |
INTRODUCTION_TEXT = """
|
|
|
47 |
"""
|
48 |
|
49 |
EVALUATION_QUEUE_TEXT = """
|
50 |
+
We encourage submissions for the IL-TUR leaderboard. The leaderboard is open to all researchers and practitioners.
|
51 |
|
52 |
+
Every task has its own leaderboard, and researchers can submit their results for any task. We also encourage submissions for multiple tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
"""
|
54 |
|
55 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,29 +21,31 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
-
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
|
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
@@ -53,12 +56,13 @@ class EvalQueueColumn: # Queue column
|
|
53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
|
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
58 |
class ModelDetails:
|
59 |
name: str
|
60 |
display_name: str = ""
|
61 |
-
symbol: str = ""
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
@@ -83,18 +87,20 @@ class ModelType(Enum):
|
|
83 |
return ModelType.IFT
|
84 |
return ModelType.Unknown
|
85 |
|
|
|
86 |
class WeightType(Enum):
|
87 |
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
|
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
94 |
float32 = ModelDetails("float32")
|
95 |
-
#qt_8bit = ModelDetails("8bit")
|
96 |
-
#qt_4bit = ModelDetails("4bit")
|
97 |
-
#qt_GPTQ = ModelDetails("GPTQ")
|
98 |
Unknown = ModelDetails("?")
|
99 |
|
100 |
def from_str(precision):
|
@@ -104,14 +110,15 @@ class Precision(Enum):
|
|
104 |
return Precision.bfloat16
|
105 |
if precision in ["float32"]:
|
106 |
return Precision.float32
|
107 |
-
#if precision in ["8bit"]:
|
108 |
# return Precision.qt_8bit
|
109 |
-
#if precision in ["4bit"]:
|
110 |
# return Precision.qt_4bit
|
111 |
-
#if precision in ["GPTQ", "None"]:
|
112 |
# return Precision.qt_GPTQ
|
113 |
return Precision.Unknown
|
114 |
|
|
|
115 |
# Column selection
|
116 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
117 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
## Leaderboard columns
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
+
# Scores
|
31 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
32 |
for task in Tasks:
|
33 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
34 |
+
# # Model information
|
35 |
+
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
37 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
38 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
39 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
41 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
42 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
43 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
44 |
|
45 |
# We use make dataclass to dynamically fill the scores from Tasks
|
46 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
47 |
|
48 |
+
|
49 |
## For the queue columns in the submission tab
|
50 |
@dataclass(frozen=True)
|
51 |
class EvalQueueColumn: # Queue column
|
|
|
56 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
57 |
status = ColumnContent("status", "str", True)
|
58 |
|
59 |
+
|
60 |
## All the model information that we might need
|
61 |
@dataclass
|
62 |
class ModelDetails:
|
63 |
name: str
|
64 |
display_name: str = ""
|
65 |
+
symbol: str = "" # emoji
|
66 |
|
67 |
|
68 |
class ModelType(Enum):
|
|
|
87 |
return ModelType.IFT
|
88 |
return ModelType.Unknown
|
89 |
|
90 |
+
|
91 |
class WeightType(Enum):
|
92 |
Adapter = ModelDetails("Adapter")
|
93 |
Original = ModelDetails("Original")
|
94 |
Delta = ModelDetails("Delta")
|
95 |
|
96 |
+
|
97 |
class Precision(Enum):
|
98 |
float16 = ModelDetails("float16")
|
99 |
bfloat16 = ModelDetails("bfloat16")
|
100 |
float32 = ModelDetails("float32")
|
101 |
+
# qt_8bit = ModelDetails("8bit")
|
102 |
+
# qt_4bit = ModelDetails("4bit")
|
103 |
+
# qt_GPTQ = ModelDetails("GPTQ")
|
104 |
Unknown = ModelDetails("?")
|
105 |
|
106 |
def from_str(precision):
|
|
|
110 |
return Precision.bfloat16
|
111 |
if precision in ["float32"]:
|
112 |
return Precision.float32
|
113 |
+
# if precision in ["8bit"]:
|
114 |
# return Precision.qt_8bit
|
115 |
+
# if precision in ["4bit"]:
|
116 |
# return Precision.qt_4bit
|
117 |
+
# if precision in ["GPTQ", "None"]:
|
118 |
# return Precision.qt_GPTQ
|
119 |
return Precision.Unknown
|
120 |
|
121 |
+
|
122 |
# Column selection
|
123 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
124 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|