Fabrice-TIERCELIN commited on
Commit
28b5180
·
verified ·
1 Parent(s): 6ed0aea

Upload 5 files

Browse files
llava/constants.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
5
+
6
+ # Model Constants
7
+ IGNORE_INDEX = -100
8
+ IMAGE_TOKEN_INDEX = -200
9
+ DEFAULT_IMAGE_TOKEN = "<image>"
10
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
+ DEFAULT_IM_START_TOKEN = "<im_start>"
12
+ DEFAULT_IM_END_TOKEN = "<im_end>"
llava/conversation.py ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import auto, Enum
3
+ from typing import List, Tuple
4
+
5
+
6
+ class SeparatorStyle(Enum):
7
+ """Different separator style."""
8
+ SINGLE = auto()
9
+ TWO = auto()
10
+ MPT = auto()
11
+ PLAIN = auto()
12
+ LLAMA_2 = auto()
13
+
14
+
15
+ @dataclasses.dataclass
16
+ class Conversation:
17
+ """A class that keeps all conversation history."""
18
+ system: str
19
+ roles: List[str]
20
+ messages: List[List[str]]
21
+ offset: int
22
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
23
+ sep: str = "###"
24
+ sep2: str = None
25
+ version: str = "Unknown"
26
+
27
+ skip_next: bool = False
28
+
29
+ def get_prompt(self):
30
+ messages = self.messages
31
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
32
+ messages = self.messages.copy()
33
+ init_role, init_msg = messages[0].copy()
34
+ init_msg = init_msg[0].replace("<image>", "").strip()
35
+ if 'mmtag' in self.version:
36
+ messages[0] = (init_role, init_msg)
37
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
38
+ messages.insert(1, (self.roles[1], "Received."))
39
+ else:
40
+ messages[0] = (init_role, "<image>\n" + init_msg)
41
+
42
+ if self.sep_style == SeparatorStyle.SINGLE:
43
+ ret = self.system + self.sep
44
+ for role, message in messages:
45
+ if message:
46
+ if type(message) is tuple:
47
+ message, _, _ = message
48
+ ret += role + ": " + message + self.sep
49
+ else:
50
+ ret += role + ":"
51
+ elif self.sep_style == SeparatorStyle.TWO:
52
+ seps = [self.sep, self.sep2]
53
+ ret = self.system + seps[0]
54
+ for i, (role, message) in enumerate(messages):
55
+ if message:
56
+ if type(message) is tuple:
57
+ message, _, _ = message
58
+ ret += role + ": " + message + seps[i % 2]
59
+ else:
60
+ ret += role + ":"
61
+ elif self.sep_style == SeparatorStyle.MPT:
62
+ ret = self.system + self.sep
63
+ for role, message in messages:
64
+ if message:
65
+ if type(message) is tuple:
66
+ message, _, _ = message
67
+ ret += role + message + self.sep
68
+ else:
69
+ ret += role
70
+ elif self.sep_style == SeparatorStyle.LLAMA_2:
71
+ wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
72
+ wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
73
+ ret = ""
74
+
75
+ for i, (role, message) in enumerate(messages):
76
+ if i == 0:
77
+ assert message, "first message should not be none"
78
+ assert role == self.roles[0], "first message should come from user"
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i == 0: message = wrap_sys(self.system) + message
83
+ if i % 2 == 0:
84
+ message = wrap_inst(message)
85
+ ret += self.sep + message
86
+ else:
87
+ ret += " " + message + " " + self.sep2
88
+ else:
89
+ ret += ""
90
+ ret = ret.lstrip(self.sep)
91
+ elif self.sep_style == SeparatorStyle.PLAIN:
92
+ seps = [self.sep, self.sep2]
93
+ ret = self.system
94
+ for i, (role, message) in enumerate(messages):
95
+ if message:
96
+ if type(message) is tuple:
97
+ message, _, _ = message
98
+ ret += message + seps[i % 2]
99
+ else:
100
+ ret += ""
101
+ else:
102
+ raise ValueError(f"Invalid style: {self.sep_style}")
103
+
104
+ return ret
105
+
106
+ def append_message(self, role, message):
107
+ self.messages.append([role, message])
108
+
109
+ def get_images(self, return_pil=False):
110
+ images = []
111
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
112
+ if i % 2 == 0:
113
+ if type(msg) is tuple:
114
+ import base64
115
+ from io import BytesIO
116
+ from PIL import Image
117
+ msg, image, image_process_mode = msg
118
+ if image_process_mode == "Pad":
119
+ def expand2square(pil_img, background_color=(122, 116, 104)):
120
+ width, height = pil_img.size
121
+ if width == height:
122
+ return pil_img
123
+ elif width > height:
124
+ result = Image.new(pil_img.mode, (width, width), background_color)
125
+ result.paste(pil_img, (0, (width - height) // 2))
126
+ return result
127
+ else:
128
+ result = Image.new(pil_img.mode, (height, height), background_color)
129
+ result.paste(pil_img, ((height - width) // 2, 0))
130
+ return result
131
+ image = expand2square(image)
132
+ elif image_process_mode in ["Default", "Crop"]:
133
+ pass
134
+ elif image_process_mode == "Resize":
135
+ image = image.resize((336, 336))
136
+ else:
137
+ raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
138
+ max_hw, min_hw = max(image.size), min(image.size)
139
+ aspect_ratio = max_hw / min_hw
140
+ max_len, min_len = 800, 400
141
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
142
+ longest_edge = int(shortest_edge * aspect_ratio)
143
+ W, H = image.size
144
+ if longest_edge != max(image.size):
145
+ if H > W:
146
+ H, W = longest_edge, shortest_edge
147
+ else:
148
+ H, W = shortest_edge, longest_edge
149
+ image = image.resize((W, H))
150
+ if return_pil:
151
+ images.append(image)
152
+ else:
153
+ buffered = BytesIO()
154
+ image.save(buffered, format="PNG")
155
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
156
+ images.append(img_b64_str)
157
+ return images
158
+
159
+ def to_gradio_chatbot(self):
160
+ ret = []
161
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
162
+ if i % 2 == 0:
163
+ if type(msg) is tuple:
164
+ import base64
165
+ from io import BytesIO
166
+ msg, image, image_process_mode = msg
167
+ max_hw, min_hw = max(image.size), min(image.size)
168
+ aspect_ratio = max_hw / min_hw
169
+ max_len, min_len = 800, 400
170
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
171
+ longest_edge = int(shortest_edge * aspect_ratio)
172
+ W, H = image.size
173
+ if H > W:
174
+ H, W = longest_edge, shortest_edge
175
+ else:
176
+ H, W = shortest_edge, longest_edge
177
+ image = image.resize((W, H))
178
+ buffered = BytesIO()
179
+ image.save(buffered, format="JPEG")
180
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
181
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
182
+ msg = img_str + msg.replace('<image>', '').strip()
183
+ ret.append([msg, None])
184
+ else:
185
+ ret.append([msg, None])
186
+ else:
187
+ ret[-1][-1] = msg
188
+ return ret
189
+
190
+ def copy(self):
191
+ return Conversation(
192
+ system=self.system,
193
+ roles=self.roles,
194
+ messages=[[x, y] for x, y in self.messages],
195
+ offset=self.offset,
196
+ sep_style=self.sep_style,
197
+ sep=self.sep,
198
+ sep2=self.sep2,
199
+ version=self.version)
200
+
201
+ def dict(self):
202
+ if len(self.get_images()) > 0:
203
+ return {
204
+ "system": self.system,
205
+ "roles": self.roles,
206
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
207
+ "offset": self.offset,
208
+ "sep": self.sep,
209
+ "sep2": self.sep2,
210
+ }
211
+ return {
212
+ "system": self.system,
213
+ "roles": self.roles,
214
+ "messages": self.messages,
215
+ "offset": self.offset,
216
+ "sep": self.sep,
217
+ "sep2": self.sep2,
218
+ }
219
+
220
+
221
+ conv_vicuna_v0 = Conversation(
222
+ system="A chat between a curious human and an artificial intelligence assistant. "
223
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
224
+ roles=("Human", "Assistant"),
225
+ messages=(
226
+ ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
227
+ ("Assistant",
228
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
229
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
230
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
231
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
232
+ "renewable and non-renewable energy sources:\n"
233
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
234
+ "energy sources are finite and will eventually run out.\n"
235
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
236
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
237
+ "and other negative effects.\n"
238
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
239
+ "have lower operational costs than non-renewable sources.\n"
240
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
241
+ "locations than non-renewable sources.\n"
242
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
243
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
244
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
245
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
246
+ ),
247
+ offset=2,
248
+ sep_style=SeparatorStyle.SINGLE,
249
+ sep="###",
250
+ )
251
+
252
+ conv_vicuna_v1 = Conversation(
253
+ system="A chat between a curious user and an artificial intelligence assistant. "
254
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
255
+ roles=("USER", "ASSISTANT"),
256
+ version="v1",
257
+ messages=(),
258
+ offset=0,
259
+ sep_style=SeparatorStyle.TWO,
260
+ sep=" ",
261
+ sep2="</s>",
262
+ )
263
+
264
+ conv_llama_2 = Conversation(
265
+ system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
266
+
267
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
268
+ roles=("USER", "ASSISTANT"),
269
+ version="llama_v2",
270
+ messages=(),
271
+ offset=0,
272
+ sep_style=SeparatorStyle.LLAMA_2,
273
+ sep="<s>",
274
+ sep2="</s>",
275
+ )
276
+
277
+ conv_llava_llama_2 = Conversation(
278
+ system="You are a helpful language and vision assistant. "
279
+ "You are able to understand the visual content that the user provides, "
280
+ "and assist the user with a variety of tasks using natural language.",
281
+ roles=("USER", "ASSISTANT"),
282
+ version="llama_v2",
283
+ messages=(),
284
+ offset=0,
285
+ sep_style=SeparatorStyle.LLAMA_2,
286
+ sep="<s>",
287
+ sep2="</s>",
288
+ )
289
+
290
+ conv_mpt = Conversation(
291
+ system="""<|im_start|>system
292
+ A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
293
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
294
+ version="mpt",
295
+ messages=(),
296
+ offset=0,
297
+ sep_style=SeparatorStyle.MPT,
298
+ sep="<|im_end|>",
299
+ )
300
+
301
+ conv_llava_plain = Conversation(
302
+ system="",
303
+ roles=("", ""),
304
+ messages=(
305
+ ),
306
+ offset=0,
307
+ sep_style=SeparatorStyle.PLAIN,
308
+ sep="\n",
309
+ )
310
+
311
+ conv_llava_v0 = Conversation(
312
+ system="A chat between a curious human and an artificial intelligence assistant. "
313
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
314
+ roles=("Human", "Assistant"),
315
+ messages=(
316
+ ),
317
+ offset=0,
318
+ sep_style=SeparatorStyle.SINGLE,
319
+ sep="###",
320
+ )
321
+
322
+ conv_llava_v0_mmtag = Conversation(
323
+ system="A chat between a curious user and an artificial intelligence assistant. "
324
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
325
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
326
+ roles=("Human", "Assistant"),
327
+ messages=(
328
+ ),
329
+ offset=0,
330
+ sep_style=SeparatorStyle.SINGLE,
331
+ sep="###",
332
+ version="v0_mmtag",
333
+ )
334
+
335
+ conv_llava_v1 = Conversation(
336
+ system="A chat between a curious human and an artificial intelligence assistant. "
337
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
338
+ roles=("USER", "ASSISTANT"),
339
+ version="v1",
340
+ messages=(),
341
+ offset=0,
342
+ sep_style=SeparatorStyle.TWO,
343
+ sep=" ",
344
+ sep2="</s>",
345
+ )
346
+
347
+ conv_llava_v1_mmtag = Conversation(
348
+ system="A chat between a curious user and an artificial intelligence assistant. "
349
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
350
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
351
+ roles=("USER", "ASSISTANT"),
352
+ messages=(),
353
+ offset=0,
354
+ sep_style=SeparatorStyle.TWO,
355
+ sep=" ",
356
+ sep2="</s>",
357
+ version="v1_mmtag",
358
+ )
359
+
360
+ default_conversation = conv_vicuna_v0
361
+ conv_templates = {
362
+ "default": conv_vicuna_v0,
363
+ "v0": conv_vicuna_v0,
364
+ "v1": conv_vicuna_v1,
365
+ "vicuna_v1": conv_vicuna_v1,
366
+ "llama_2": conv_llama_2,
367
+
368
+ "plain": conv_llava_plain,
369
+ "v0_plain": conv_llava_plain,
370
+ "llava_v0": conv_llava_v0,
371
+ "v0_mmtag": conv_llava_v0_mmtag,
372
+ "llava_v1": conv_llava_v1,
373
+ "v1_mmtag": conv_llava_v1_mmtag,
374
+ "llava_llama_2": conv_llava_llama_2,
375
+
376
+ "mpt": conv_mpt,
377
+ }
378
+
379
+
380
+ if __name__ == "__main__":
381
+ print(default_conversation.get_prompt())
llava/llava_agent.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ import json
4
+ from tqdm import tqdm
5
+
6
+ from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
7
+ from llava.conversation import conv_templates, SeparatorStyle
8
+ from llava.model.builder import load_pretrained_model
9
+ from llava.utils import disable_torch_init
10
+ from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
11
+
12
+ from PIL import Image
13
+ import math
14
+ import time
15
+ import glob as gb
16
+
17
+
18
+ class LLavaAgent:
19
+ def __init__(self, model_path, device='cuda', conv_mode='vicuna_v1', load_8bit=False, load_4bit=False):
20
+ self.device = device
21
+ if torch.device(self.device).index is not None:
22
+ device_map = {'model': torch.device(self.device).index, 'lm_head': torch.device(self.device).index}
23
+ else:
24
+ device_map = 'auto'
25
+ model_path = os.path.expanduser(model_path)
26
+ model_name = get_model_name_from_path(model_path)
27
+ tokenizer, model, image_processor, context_len = load_pretrained_model(
28
+ model_path, None, model_name, device=self.device, device_map=device_map,
29
+ load_8bit=load_8bit, load_4bit=load_4bit)
30
+ self.model = model
31
+ self.image_processor = image_processor
32
+ self.tokenizer = tokenizer
33
+ self.context_len = context_len
34
+ self.qs = 'Describe this image and its style in a very detailed manner.'
35
+ self.conv_mode = conv_mode
36
+
37
+ if self.model.config.mm_use_im_start_end:
38
+ self.qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + self.qs
39
+ else:
40
+ self.qs = DEFAULT_IMAGE_TOKEN + '\n' + self.qs
41
+
42
+ self.conv = conv_templates[self.conv_mode].copy()
43
+ self.conv.append_message(self.conv.roles[0], self.qs)
44
+ self.conv.append_message(self.conv.roles[1], None)
45
+ prompt = self.conv.get_prompt()
46
+ self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
47
+ 0).to(self.device)
48
+
49
+ def update_qs(self, qs=None):
50
+ if qs is None:
51
+ qs = self.qs
52
+ else:
53
+ if self.model.config.mm_use_im_start_end:
54
+ qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
55
+ else:
56
+ qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
57
+
58
+ self.conv = conv_templates[self.conv_mode].copy()
59
+ self.conv.append_message(self.conv.roles[0], qs)
60
+ self.conv.append_message(self.conv.roles[1], None)
61
+ prompt = self.conv.get_prompt()
62
+ self.input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
63
+ 0).to(self.device)
64
+
65
+ def gen_image_caption(self, imgs, temperature=0.2, top_p=0.7, num_beams=1, qs=None):
66
+ '''
67
+ [PIL.Image, ...]
68
+ '''
69
+ self.update_qs(qs)
70
+
71
+ bs = len(imgs)
72
+ input_ids = self.input_ids.repeat(bs, 1)
73
+ img_tensor_list = []
74
+ for image in imgs:
75
+ _image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
76
+ img_tensor_list.append(_image_tensor)
77
+ image_tensor = torch.stack(img_tensor_list, dim=0).half().to(self.device)
78
+ stop_str = self.conv.sep if self.conv.sep_style != SeparatorStyle.TWO else self.conv.sep2
79
+
80
+ with torch.inference_mode():
81
+ output_ids = self.model.generate(
82
+ input_ids,
83
+ images=image_tensor,
84
+ do_sample=True if temperature > 0 else False,
85
+ temperature=temperature,
86
+ top_p=top_p,
87
+ num_beams=num_beams,
88
+ # no_repeat_ngram_size=3,
89
+ max_new_tokens=512,
90
+ use_cache=True)
91
+
92
+ input_token_len = input_ids.shape[1]
93
+ outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)
94
+
95
+ img_captions = []
96
+ for output in outputs:
97
+ output = output.strip()
98
+ if output.endswith(stop_str):
99
+ output = output[:-len(stop_str)]
100
+ output = output.strip().replace('\n', ' ').replace('\r', ' ')
101
+ img_captions.append(output)
102
+ return img_captions
103
+
104
+
105
+ if __name__ == '__main__':
106
+ llava_agent = LLavaAgent("/opt/data/private/AIGC_pretrain/LLaVA1.5/llava-v1.5-13b")
107
+ img = [Image.open('/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ/02.png')]
108
+ caption = llava_agent.gen_image_caption(img)
llava/mm_utils.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from io import BytesIO
3
+ import base64
4
+
5
+ import torch
6
+ from transformers import StoppingCriteria
7
+ from llava.constants import IMAGE_TOKEN_INDEX
8
+
9
+
10
+ def load_image_from_base64(image):
11
+ return Image.open(BytesIO(base64.b64decode(image)))
12
+
13
+
14
+ def expand2square(pil_img, background_color):
15
+ width, height = pil_img.size
16
+ if width == height:
17
+ return pil_img
18
+ elif width > height:
19
+ result = Image.new(pil_img.mode, (width, width), background_color)
20
+ result.paste(pil_img, (0, (width - height) // 2))
21
+ return result
22
+ else:
23
+ result = Image.new(pil_img.mode, (height, height), background_color)
24
+ result.paste(pil_img, ((height - width) // 2, 0))
25
+ return result
26
+
27
+
28
+ def process_images(images, image_processor, model_cfg):
29
+ image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
30
+ new_images = []
31
+ if image_aspect_ratio == 'pad':
32
+ for image in images:
33
+ image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
34
+ image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
35
+ new_images.append(image)
36
+ else:
37
+ return image_processor(images, return_tensors='pt')['pixel_values']
38
+ if all(x.shape == new_images[0].shape for x in new_images):
39
+ new_images = torch.stack(new_images, dim=0)
40
+ return new_images
41
+
42
+
43
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
44
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
45
+
46
+ def insert_separator(X, sep):
47
+ return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
48
+
49
+ input_ids = []
50
+ offset = 0
51
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
52
+ offset = 1
53
+ input_ids.append(prompt_chunks[0][0])
54
+
55
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
56
+ input_ids.extend(x[offset:])
57
+
58
+ if return_tensors is not None:
59
+ if return_tensors == 'pt':
60
+ return torch.tensor(input_ids, dtype=torch.long)
61
+ raise ValueError(f'Unsupported tensor type: {return_tensors}')
62
+ return input_ids
63
+
64
+
65
+ def get_model_name_from_path(model_path):
66
+ model_path = model_path.strip("/")
67
+ model_paths = model_path.split("/")
68
+ if model_paths[-1].startswith('checkpoint-'):
69
+ return model_paths[-2] + "_" + model_paths[-1]
70
+ else:
71
+ return model_paths[-1]
72
+
73
+
74
+
75
+
76
+ class KeywordsStoppingCriteria(StoppingCriteria):
77
+ def __init__(self, keywords, tokenizer, input_ids):
78
+ self.keywords = keywords
79
+ self.keyword_ids = []
80
+ self.max_keyword_len = 0
81
+ for keyword in keywords:
82
+ cur_keyword_ids = tokenizer(keyword).input_ids
83
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
84
+ cur_keyword_ids = cur_keyword_ids[1:]
85
+ if len(cur_keyword_ids) > self.max_keyword_len:
86
+ self.max_keyword_len = len(cur_keyword_ids)
87
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
88
+ self.tokenizer = tokenizer
89
+ self.start_len = input_ids.shape[1]
90
+
91
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
92
+ assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
93
+ offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
94
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
95
+ for keyword_id in self.keyword_ids:
96
+ if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
97
+ return True
98
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
99
+ for keyword in self.keywords:
100
+ if keyword in outputs:
101
+ return True
102
+ return False
llava/utils.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import logging
3
+ import logging.handlers
4
+ import os
5
+ import sys
6
+
7
+ import requests
8
+
9
+ from llava.constants import LOGDIR
10
+
11
+ server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
12
+ moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
13
+
14
+ handler = None
15
+
16
+
17
+ def build_logger(logger_name, logger_filename):
18
+ global handler
19
+
20
+ formatter = logging.Formatter(
21
+ fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
22
+ datefmt="%Y-%m-%d %H:%M:%S",
23
+ )
24
+
25
+ # Set the format of root handlers
26
+ if not logging.getLogger().handlers:
27
+ logging.basicConfig(level=logging.INFO)
28
+ logging.getLogger().handlers[0].setFormatter(formatter)
29
+
30
+ # Redirect stdout and stderr to loggers
31
+ stdout_logger = logging.getLogger("stdout")
32
+ stdout_logger.setLevel(logging.INFO)
33
+ sl = StreamToLogger(stdout_logger, logging.INFO)
34
+ sys.stdout = sl
35
+
36
+ stderr_logger = logging.getLogger("stderr")
37
+ stderr_logger.setLevel(logging.ERROR)
38
+ sl = StreamToLogger(stderr_logger, logging.ERROR)
39
+ sys.stderr = sl
40
+
41
+ # Get logger
42
+ logger = logging.getLogger(logger_name)
43
+ logger.setLevel(logging.INFO)
44
+
45
+ # Add a file handler for all loggers
46
+ if handler is None:
47
+ os.makedirs(LOGDIR, exist_ok=True)
48
+ filename = os.path.join(LOGDIR, logger_filename)
49
+ handler = logging.handlers.TimedRotatingFileHandler(
50
+ filename, when='D', utc=True)
51
+ handler.setFormatter(formatter)
52
+
53
+ for name, item in logging.root.manager.loggerDict.items():
54
+ if isinstance(item, logging.Logger):
55
+ item.addHandler(handler)
56
+
57
+ return logger
58
+
59
+
60
+ class StreamToLogger(object):
61
+ """
62
+ Fake file-like stream object that redirects writes to a logger instance.
63
+ """
64
+ def __init__(self, logger, log_level=logging.INFO):
65
+ self.terminal = sys.stdout
66
+ self.logger = logger
67
+ self.log_level = log_level
68
+ self.linebuf = ''
69
+
70
+ def __getattr__(self, attr):
71
+ return getattr(self.terminal, attr)
72
+
73
+ def write(self, buf):
74
+ temp_linebuf = self.linebuf + buf
75
+ self.linebuf = ''
76
+ for line in temp_linebuf.splitlines(True):
77
+ # From the io.TextIOWrapper docs:
78
+ # On output, if newline is None, any '\n' characters written
79
+ # are translated to the system default line separator.
80
+ # By default sys.stdout.write() expects '\n' newlines and then
81
+ # translates them so this is still cross platform.
82
+ if line[-1] == '\n':
83
+ self.logger.log(self.log_level, line.rstrip())
84
+ else:
85
+ self.linebuf += line
86
+
87
+ def flush(self):
88
+ if self.linebuf != '':
89
+ self.logger.log(self.log_level, self.linebuf.rstrip())
90
+ self.linebuf = ''
91
+
92
+
93
+ def disable_torch_init():
94
+ """
95
+ Disable the redundant torch default initialization to accelerate model creation.
96
+ """
97
+ import torch
98
+ setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
99
+ setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
100
+
101
+
102
+ def violates_moderation(text):
103
+ """
104
+ Check whether the text violates OpenAI moderation API.
105
+ """
106
+ url = "https://api.openai.com/v1/moderations"
107
+ headers = {"Content-Type": "application/json",
108
+ "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
109
+ text = text.replace("\n", "")
110
+ data = "{" + '"input": ' + f'"{text}"' + "}"
111
+ data = data.encode("utf-8")
112
+ try:
113
+ ret = requests.post(url, headers=headers, data=data, timeout=5)
114
+ flagged = ret.json()["results"][0]["flagged"]
115
+ except requests.exceptions.RequestException as e:
116
+ flagged = False
117
+ except KeyError as e:
118
+ flagged = False
119
+
120
+ return flagged
121
+
122
+
123
+ def pretty_print_semaphore(semaphore):
124
+ if semaphore is None:
125
+ return "None"
126
+ return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"