Spaces:
Runtime error
Runtime error
# This Python 3 environment comes with many helpful analytics libraries installed | |
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python | |
# For example, here's several helpful packages to load | |
import numpy as np # linear algebra | |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) | |
# Input data files are available in the read-only "../input/" directory | |
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory | |
import os | |
for dirname, _, filenames in os.walk('/kaggle/input'): | |
for filename in filenames: | |
print(os.path.join(dirname, filename)) | |
# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" | |
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session | |
#|default_exp app | |
#|export | |
#pip install fastbook | |
import fastbook | |
from fastbook import * | |
#pip install fastai | |
from fastai.vision.widgets import * | |
#pip install gradio | |
import gradio as gr | |
import IPython | |
from IPython.display import display | |
from PIL import Image | |
import pathlib | |
#temp = pathlib.PosixPath | |
#pathlib.PosixPath = pathlib.WindowsPath | |
plt = platform.system() | |
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
def search_images(term, max_images=999999): | |
print(f"Searching for '{term}'") | |
return search_images_ddg(term, max_images) | |
learn = load_learner('model.pkl') | |
breeds = ('Labrador Retrievers','German Shepherds','Golden Retrievers','French Bulldogs','Bulldogs','Beagles','Poodles','Rottweilers','Chihuahua') | |
def classify_image(img): | |
pred,idx,probs = learn.predict(img) | |
#return dict(zip(breeds, map(float,probs))) | |
return "This is " + pred | |
image = gr.components.Image() | |
label = gr.components.Label() | |
examples = ['dog.jpg','labrador.jpeg','dunno.jpg'] | |
for x in examples: | |
Image.open(x) | |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) | |
intf.launch(inline=False) |