IMS-Toucan / InferenceInterfaces /Meta_FastSpeech2.py
Florian Lux
initial commit
cea6632
raw
history blame
5.91 kB
import itertools
import os
import librosa.display as lbd
import matplotlib.pyplot as plt
import sounddevice
import soundfile
import torch
from InferenceInterfaces.InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2
from InferenceInterfaces.InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend
from Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id
from Preprocessing.ProsodicConditionExtractor import ProsodicConditionExtractor
class Meta_FastSpeech2(torch.nn.Module):
def __init__(self, device="cpu"):
super().__init__()
model_name = "Meta"
language = "en"
self.device = device
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True)
checkpoint = torch.load(os.path.join("Models", f"FastSpeech2_{model_name}", "best.pt"), map_location='cpu')
self.phone2mel = FastSpeech2(weights=checkpoint["model"]).to(torch.device(device))
self.mel2wav = HiFiGANGenerator(path_to_weights=os.path.join("Models", "HiFiGAN_combined", "best.pt")).to(torch.device(device))
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device)
self.phone2mel.eval()
self.mel2wav.eval()
self.lang_id = get_language_id(language)
self.to(torch.device(device))
def set_utterance_embedding(self, path_to_reference_audio):
wave, sr = soundfile.read(path_to_reference_audio)
self.default_utterance_embedding = ProsodicConditionExtractor(sr=sr).extract_condition_from_reference_wave(wave).to(self.device)
def set_language(self, lang_id):
"""
The id parameter actually refers to the shorthand. This has become ambiguous with the introduction of the actual language IDs
"""
self.text2phone = ArticulatoryCombinedTextFrontend(language=lang_id, add_silence_to_end=True)
self.lang_id = get_language_id(lang_id).to(self.device)
def forward(self, text, view=False, durations=None, pitch=None, energy=None):
with torch.no_grad():
phones = self.text2phone.string_to_tensor(text).to(torch.device(self.device))
mel, durations, pitch, energy = self.phone2mel(phones,
return_duration_pitch_energy=True,
utterance_embedding=self.default_utterance_embedding,
durations=durations,
pitch=pitch,
energy=energy)
mel = mel.transpose(0, 1)
wave = self.mel2wav(mel)
if view:
from Utility.utils import cumsum_durations
fig, ax = plt.subplots(nrows=2, ncols=1)
ax[0].plot(wave.cpu().numpy())
lbd.specshow(mel.cpu().numpy(),
ax=ax[1],
sr=16000,
cmap='GnBu',
y_axis='mel',
x_axis=None,
hop_length=256)
ax[0].yaxis.set_visible(False)
ax[1].yaxis.set_visible(False)
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy())
ax[1].set_xticks(duration_splits, minor=True)
ax[1].xaxis.grid(True, which='minor')
ax[1].set_xticks(label_positions, minor=False)
ax[1].set_xticklabels(self.text2phone.get_phone_string(text))
ax[0].set_title(text)
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0)
plt.show()
return wave
def read_to_file(self, text_list, file_location, silent=False, dur_list=None, pitch_list=None, energy_list=None):
"""
:param silent: Whether to be verbose about the process
:param text_list: A list of strings to be read
:param file_location: The path and name of the file it should be saved to
"""
if not dur_list:
dur_list = []
if not pitch_list:
pitch_list = []
if not energy_list:
energy_list = []
wav = None
silence = torch.zeros([24000])
for (text, durations, pitch, energy) in itertools.zip_longest(text_list, dur_list, pitch_list, energy_list):
if text.strip() != "":
if not silent:
print("Now synthesizing: {}".format(text))
if wav is None:
if durations is not None:
durations = durations.to(self.device)
if pitch is not None:
pitch = pitch.to(self.device)
if energy is not None:
energy = energy.to(self.device)
wav = self(text, durations=durations, pitch=pitch, energy=energy).cpu()
wav = torch.cat((wav, silence), 0)
else:
wav = torch.cat((wav, self(text, durations=durations.to(self.device), pitch=pitch.to(self.device), energy=energy.to(self.device)).cpu()), 0)
wav = torch.cat((wav, silence), 0)
soundfile.write(file=file_location, data=wav.cpu().numpy(), samplerate=48000)
def read_aloud(self, text, view=False, blocking=False):
if text.strip() == "":
return
wav = self(text, view).cpu()
wav = torch.cat((wav, torch.zeros([24000])), 0)
if not blocking:
sounddevice.play(wav.numpy(), samplerate=48000)
else:
sounddevice.play(torch.cat((wav, torch.zeros([12000])), 0).numpy(), samplerate=48000)
sounddevice.wait()