File size: 3,382 Bytes
62e125d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Transformer implementation adapted from CLIP ViT:
https://github.com/openai/CLIP/blob/4c0275784d6d9da97ca1f47eaaee31de1867da91/clip/model.py
"""

import math

import torch as th
import torch.nn as nn


def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


class LayerNorm(nn.LayerNorm):
    """
    Implementation that supports fp16 inputs but fp32 gains/biases.
    """

    def forward(self, x: th.Tensor):
        return super().forward(x.float()).to(x.dtype)


class MultiheadAttention(nn.Module):
    def __init__(self, n_ctx, width, heads):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.heads = heads
        self.c_qkv = nn.Linear(width, width * 3)
        self.c_proj = nn.Linear(width, width)
        self.attention = QKVMultiheadAttention(heads, n_ctx)

    def forward(self, x):
        x = self.c_qkv(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x


class MLP(nn.Module):
    def __init__(self, width):
        super().__init__()
        self.width = width
        self.c_fc = nn.Linear(width, width * 4)
        self.c_proj = nn.Linear(width * 4, width)
        self.gelu = nn.GELU()

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))


class QKVMultiheadAttention(nn.Module):
    def __init__(self, n_heads: int, n_ctx: int):
        super().__init__()
        self.n_heads = n_heads
        self.n_ctx = n_ctx

    def forward(self, qkv):
        bs, n_ctx, width = qkv.shape
        attn_ch = width // self.n_heads // 3
        scale = 1 / math.sqrt(math.sqrt(attn_ch))
        qkv = qkv.view(bs, n_ctx, self.n_heads, -1)
        q, k, v = th.split(qkv, attn_ch, dim=-1)
        weight = th.einsum(
            "bthc,bshc->bhts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        wdtype = weight.dtype
        weight = th.softmax(weight.float(), dim=-1).type(wdtype)
        return th.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        n_ctx: int,
        width: int,
        heads: int,
    ):
        super().__init__()

        self.attn = MultiheadAttention(
            n_ctx,
            width,
            heads,
        )
        self.ln_1 = LayerNorm(width)
        self.mlp = MLP(width)
        self.ln_2 = LayerNorm(width)

    def forward(self, x: th.Tensor):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        n_ctx: int,
        width: int,
        layers: int,
        heads: int,
    ):
        super().__init__()
        self.n_ctx = n_ctx
        self.width = width
        self.layers = layers
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(
                    n_ctx,
                    width,
                    heads,
                )
                for _ in range(layers)
            ]
        )

    def forward(self, x: th.Tensor):
        for block in self.resblocks:
            x = block(x)
        return x