Spaces:
Runtime error
Runtime error
import os | |
from functools import lru_cache | |
from typing import Dict, Optional | |
import requests | |
import torch as th | |
from filelock import FileLock | |
from tqdm.auto import tqdm | |
MODEL_PATHS = { | |
# "base": "https://huggingface.co/datasets/asifhugs/weights/blob/main/base.pt", | |
# "upsample": "https://huggingface.co/datasets/asifhugs/weights/blob/main/upsample.pt", | |
"base-inpaint": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/base_inpaint.pt", | |
"upsample-inpaint": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/upsample_inpaint.pt", | |
"clip/image-enc": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/clip_image_enc.pt", | |
"clip/text-enc": "https://openaipublic.blob.core.windows.net/diffusion/dec-2021/clip_text_enc.pt", | |
} | |
def default_cache_dir() -> str: | |
return os.path.join(os.path.abspath(os.getcwd()), "glide_model_cache") | |
def fetch_file_cached( | |
url: str, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096 | |
) -> str: | |
""" | |
Download the file at the given URL into a local file and return the path. | |
If cache_dir is specified, it will be used to download the files. | |
Otherwise, default_cache_dir() is used. | |
""" | |
if cache_dir is None: | |
cache_dir = default_cache_dir() | |
os.makedirs(cache_dir, exist_ok=True) | |
response = requests.get(url, stream=True) | |
size = int(response.headers.get("content-length", "0")) | |
local_path = os.path.join(cache_dir, url.split("/")[-1]) | |
with FileLock(local_path + ".lock"): | |
if os.path.exists(local_path): | |
return local_path | |
if progress: | |
pbar = tqdm(total=size, unit="iB", unit_scale=True) | |
tmp_path = local_path + ".tmp" | |
with open(tmp_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size): | |
if progress: | |
pbar.update(len(chunk)) | |
f.write(chunk) | |
os.rename(tmp_path, local_path) | |
if progress: | |
pbar.close() | |
return local_path | |
def load_checkpoint( | |
checkpoint_name: str, | |
device: th.device, | |
progress: bool = True, | |
cache_dir: Optional[str] = None, | |
chunk_size: int = 4096, | |
) -> Dict[str, th.Tensor]: | |
if checkpoint_name not in MODEL_PATHS: | |
raise ValueError( | |
f"Unknown checkpoint name {checkpoint_name}. Known names are: {MODEL_PATHS.keys()}." | |
) | |
path = fetch_file_cached( | |
MODEL_PATHS[checkpoint_name], progress=progress, cache_dir=cache_dir, chunk_size=chunk_size | |
) | |
return th.load(path, map_location=device) | |