Freiburg-AI-Research commited on
Commit
0e9b575
Β·
1 Parent(s): 29ba125

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -8,7 +8,6 @@ import gradio as gr
8
  import base64
9
  from io import BytesIO
10
  # from fastapi import FastAPI
11
- from PIL import ImageOps
12
  from PIL import Image
13
  import torch as th
14
 
@@ -113,13 +112,11 @@ print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()
113
 
114
 
115
 
116
- def get_images(batch: th.Tensor, output_size=(256, 256)):
117
  """ Display a batch of images inline. """
118
  scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
119
  reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
120
- image = Image.fromarray(reshaped.numpy())
121
- image = ImageOps.fit(image, output_size, Image.ANTIALIAS)
122
- return image
123
 
124
 
125
 
@@ -236,10 +233,9 @@ def sample(prompt):
236
  )[:batch_size]
237
  model_up.del_cache()
238
 
239
- # Show the output
240
  image = get_images(up_samples)
241
- image = to_base64(image)
242
- #return {"image": image}
243
  return image
244
 
245
 
@@ -249,6 +245,8 @@ title = "Interactive demo: glide-text2im dermoscopic image generator"
249
  description = "Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation. Please cite our research paper with the title -Finetuning of GLIDE stable diffusion model for AI-based text-conditional image synthesis of dermoscopic images-"
250
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
251
  examples =["melanoma"]
 
 
252
 
253
  iface = gr.Interface(fn=sample,
254
  inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease, "benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
@@ -257,5 +255,6 @@ iface = gr.Interface(fn=sample,
257
  description=description,
258
  article=article,
259
  examples=examples,
 
260
  enable_queue=True)
261
  iface.launch(debug=True)
 
8
  import base64
9
  from io import BytesIO
10
  # from fastapi import FastAPI
 
11
  from PIL import Image
12
  import torch as th
13
 
 
112
 
113
 
114
 
115
+ def get_images(batch: th.Tensor):
116
  """ Display a batch of images inline. """
117
  scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
118
  reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
119
+ return Image.fromarray(reshaped.numpy())
 
 
120
 
121
 
122
 
 
233
  )[:batch_size]
234
  model_up.del_cache()
235
 
 
236
  image = get_images(up_samples)
237
+ # image = to_base64(image)
238
+ # return {"image": image}
239
  return image
240
 
241
 
 
245
  description = "Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation. Please cite our research paper with the title -Finetuning of GLIDE stable diffusion model for AI-based text-conditional image synthesis of dermoscopic images-"
246
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
247
  examples =["melanoma"]
248
+ css = ".output_image {height: 40rem !important; width: 100% !important;}"
249
+
250
 
251
  iface = gr.Interface(fn=sample,
252
  inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease, "benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
 
255
  description=description,
256
  article=article,
257
  examples=examples,
258
+ css=css,
259
  enable_queue=True)
260
  iface.launch(debug=True)