Spaces:
Runtime error
Runtime error
Freiburg-AI-Research
commited on
Commit
ยท
541b616
1
Parent(s):
66fcbdb
Upload 6 files
Browse files
glide_text2im/tokenizer/__init__.py
ADDED
File without changes
|
glide_text2im/tokenizer/bpe.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Byte pair encoding utilities adapted from:
|
3 |
+
https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gzip
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from functools import lru_cache
|
10 |
+
from typing import List, Tuple
|
11 |
+
|
12 |
+
import regex as re
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = (
|
27 |
+
list(range(ord("!"), ord("~") + 1))
|
28 |
+
+ list(range(ord("ยก"), ord("ยฌ") + 1))
|
29 |
+
+ list(range(ord("ยฎ"), ord("รฟ") + 1))
|
30 |
+
)
|
31 |
+
cs = bs[:]
|
32 |
+
n = 0
|
33 |
+
for b in range(2 ** 8):
|
34 |
+
if b not in bs:
|
35 |
+
bs.append(b)
|
36 |
+
cs.append(2 ** 8 + n)
|
37 |
+
n += 1
|
38 |
+
cs = [chr(n) for n in cs]
|
39 |
+
return dict(zip(bs, cs))
|
40 |
+
|
41 |
+
|
42 |
+
def get_pairs(word):
|
43 |
+
"""Return set of symbol pairs in a word.
|
44 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
45 |
+
"""
|
46 |
+
pairs = set()
|
47 |
+
prev_char = word[0]
|
48 |
+
for char in word[1:]:
|
49 |
+
pairs.add((prev_char, char))
|
50 |
+
prev_char = char
|
51 |
+
return pairs
|
52 |
+
|
53 |
+
|
54 |
+
class Encoder:
|
55 |
+
def __init__(self, encoder, bpe_merges, errors="replace"):
|
56 |
+
self.encoder = encoder
|
57 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
58 |
+
self.errors = errors # how to handle errors in decoding
|
59 |
+
self.byte_encoder = bytes_to_unicode()
|
60 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
61 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
62 |
+
self.cache = {}
|
63 |
+
|
64 |
+
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
65 |
+
self.pat = re.compile(
|
66 |
+
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
67 |
+
)
|
68 |
+
|
69 |
+
@property
|
70 |
+
def n_vocab(self) -> int:
|
71 |
+
return len(self.encoder)
|
72 |
+
|
73 |
+
@property
|
74 |
+
def end_token(self) -> int:
|
75 |
+
return self.n_vocab - 1
|
76 |
+
|
77 |
+
def padded_tokens_and_mask(
|
78 |
+
self, tokens: List[int], text_ctx: int
|
79 |
+
) -> Tuple[List[int], List[bool]]:
|
80 |
+
tokens = tokens[:text_ctx]
|
81 |
+
padding = text_ctx - len(tokens)
|
82 |
+
padded_tokens = tokens + [self.end_token] * padding
|
83 |
+
mask = [True] * len(tokens) + [False] * padding
|
84 |
+
return padded_tokens, mask
|
85 |
+
|
86 |
+
def bpe(self, token):
|
87 |
+
if token in self.cache:
|
88 |
+
return self.cache[token]
|
89 |
+
word = tuple(token)
|
90 |
+
pairs = get_pairs(word)
|
91 |
+
|
92 |
+
if not pairs:
|
93 |
+
return token
|
94 |
+
|
95 |
+
while True:
|
96 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
97 |
+
if bigram not in self.bpe_ranks:
|
98 |
+
break
|
99 |
+
first, second = bigram
|
100 |
+
new_word = []
|
101 |
+
i = 0
|
102 |
+
while i < len(word):
|
103 |
+
try:
|
104 |
+
j = word.index(first, i)
|
105 |
+
new_word.extend(word[i:j])
|
106 |
+
i = j
|
107 |
+
except: # pylint: disable=bare-except
|
108 |
+
new_word.extend(word[i:])
|
109 |
+
break
|
110 |
+
|
111 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
112 |
+
new_word.append(first + second)
|
113 |
+
i += 2
|
114 |
+
else:
|
115 |
+
new_word.append(word[i])
|
116 |
+
i += 1
|
117 |
+
new_word = tuple(new_word)
|
118 |
+
word = new_word
|
119 |
+
if len(word) == 1:
|
120 |
+
break
|
121 |
+
else:
|
122 |
+
pairs = get_pairs(word)
|
123 |
+
word = " ".join(word)
|
124 |
+
self.cache[token] = word
|
125 |
+
return word
|
126 |
+
|
127 |
+
def encode(self, text):
|
128 |
+
text = text.lower()
|
129 |
+
bpe_tokens = []
|
130 |
+
for token in re.findall(self.pat, text):
|
131 |
+
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
132 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" "))
|
133 |
+
return bpe_tokens
|
134 |
+
|
135 |
+
def decode(self, tokens):
|
136 |
+
text = "".join([self.decoder[token] for token in tokens])
|
137 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
138 |
+
return text
|
139 |
+
|
140 |
+
|
141 |
+
def get_encoder():
|
142 |
+
root_dir = os.path.dirname(os.path.abspath(__file__))
|
143 |
+
with gzip.open(os.path.join(root_dir, "encoder.json.gz"), "r") as f:
|
144 |
+
encoder = json.load(f)
|
145 |
+
with gzip.open(os.path.join(root_dir, "vocab.bpe.gz"), "r") as f:
|
146 |
+
bpe_data = str(f.read(), "utf-8")
|
147 |
+
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]]
|
148 |
+
return Encoder(
|
149 |
+
encoder=encoder,
|
150 |
+
bpe_merges=bpe_merges,
|
151 |
+
)
|
glide_text2im/tokenizer/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
glide_text2im/tokenizer/encoder.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4debc1cf25180021b07744bc9f4488d53c7bf112c8ce5de8097c6a7518f4ec7c
|
3 |
+
size 348346
|
glide_text2im/tokenizer/simple_tokenizer.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copied from: https://github.com/openai/CLIP/blob/573315e83f07b53a61ff5098757e8fc885f1703e/clip/simple_tokenizer.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import gzip
|
6 |
+
import html
|
7 |
+
import os
|
8 |
+
from functools import lru_cache
|
9 |
+
from typing import List, Tuple
|
10 |
+
|
11 |
+
import ftfy
|
12 |
+
import regex as re
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def default_bpe():
|
17 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def bytes_to_unicode():
|
22 |
+
"""
|
23 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
24 |
+
The reversible bpe codes work on unicode strings.
|
25 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
26 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
27 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
28 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
29 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
30 |
+
"""
|
31 |
+
bs = (
|
32 |
+
list(range(ord("!"), ord("~") + 1))
|
33 |
+
+ list(range(ord("ยก"), ord("ยฌ") + 1))
|
34 |
+
+ list(range(ord("ยฎ"), ord("รฟ") + 1))
|
35 |
+
)
|
36 |
+
cs = bs[:]
|
37 |
+
n = 0
|
38 |
+
for b in range(2 ** 8):
|
39 |
+
if b not in bs:
|
40 |
+
bs.append(b)
|
41 |
+
cs.append(2 ** 8 + n)
|
42 |
+
n += 1
|
43 |
+
cs = [chr(n) for n in cs]
|
44 |
+
return dict(zip(bs, cs))
|
45 |
+
|
46 |
+
|
47 |
+
def get_pairs(word):
|
48 |
+
"""Return set of symbol pairs in a word.
|
49 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
50 |
+
"""
|
51 |
+
pairs = set()
|
52 |
+
prev_char = word[0]
|
53 |
+
for char in word[1:]:
|
54 |
+
pairs.add((prev_char, char))
|
55 |
+
prev_char = char
|
56 |
+
return pairs
|
57 |
+
|
58 |
+
|
59 |
+
def basic_clean(text):
|
60 |
+
text = ftfy.fix_text(text)
|
61 |
+
text = html.unescape(html.unescape(text))
|
62 |
+
return text.strip()
|
63 |
+
|
64 |
+
|
65 |
+
def whitespace_clean(text):
|
66 |
+
text = re.sub(r"\s+", " ", text)
|
67 |
+
text = text.strip()
|
68 |
+
return text
|
69 |
+
|
70 |
+
|
71 |
+
class SimpleTokenizer(object):
|
72 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
73 |
+
self.byte_encoder = bytes_to_unicode()
|
74 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
75 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
76 |
+
merges = merges[1 : 49152 - 256 - 2 + 1]
|
77 |
+
merges = [tuple(merge.split()) for merge in merges]
|
78 |
+
vocab = list(bytes_to_unicode().values())
|
79 |
+
vocab = vocab + [v + "</w>" for v in vocab]
|
80 |
+
for merge in merges:
|
81 |
+
vocab.append("".join(merge))
|
82 |
+
vocab.extend(["<|startoftext|>", "<|endoftext|>"])
|
83 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
84 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
85 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
86 |
+
self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"}
|
87 |
+
self.pat = re.compile(
|
88 |
+
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
89 |
+
re.IGNORECASE,
|
90 |
+
)
|
91 |
+
|
92 |
+
@property
|
93 |
+
def start_token(self):
|
94 |
+
return self.encoder["<|startoftext|>"]
|
95 |
+
|
96 |
+
@property
|
97 |
+
def end_token(self):
|
98 |
+
return self.encoder["<|endoftext|>"]
|
99 |
+
|
100 |
+
def padded_tokens_and_len(self, tokens: List[int], text_ctx: int) -> Tuple[List[int], int]:
|
101 |
+
tokens = [self.start_token] + tokens[: text_ctx - 2] + [self.end_token]
|
102 |
+
text_len = len(tokens)
|
103 |
+
padding = text_ctx - len(tokens)
|
104 |
+
padded_tokens = tokens + [0] * padding
|
105 |
+
return padded_tokens, text_len
|
106 |
+
|
107 |
+
def bpe(self, token):
|
108 |
+
if token in self.cache:
|
109 |
+
return self.cache[token]
|
110 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
111 |
+
pairs = get_pairs(word)
|
112 |
+
|
113 |
+
if not pairs:
|
114 |
+
return token + "</w>"
|
115 |
+
|
116 |
+
while True:
|
117 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
118 |
+
if bigram not in self.bpe_ranks:
|
119 |
+
break
|
120 |
+
first, second = bigram
|
121 |
+
new_word = []
|
122 |
+
i = 0
|
123 |
+
while i < len(word):
|
124 |
+
try:
|
125 |
+
j = word.index(first, i)
|
126 |
+
new_word.extend(word[i:j])
|
127 |
+
i = j
|
128 |
+
except: # pylint: disable=bare-except
|
129 |
+
new_word.extend(word[i:])
|
130 |
+
break
|
131 |
+
|
132 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
133 |
+
new_word.append(first + second)
|
134 |
+
i += 2
|
135 |
+
else:
|
136 |
+
new_word.append(word[i])
|
137 |
+
i += 1
|
138 |
+
new_word = tuple(new_word)
|
139 |
+
word = new_word
|
140 |
+
if len(word) == 1:
|
141 |
+
break
|
142 |
+
else:
|
143 |
+
pairs = get_pairs(word)
|
144 |
+
word = " ".join(word)
|
145 |
+
self.cache[token] = word
|
146 |
+
return word
|
147 |
+
|
148 |
+
def encode(self, text):
|
149 |
+
bpe_tokens = []
|
150 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
151 |
+
for token in re.findall(self.pat, text):
|
152 |
+
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
153 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" "))
|
154 |
+
return bpe_tokens
|
155 |
+
|
156 |
+
def decode(self, tokens):
|
157 |
+
text = "".join([self.decoder[token] for token in tokens])
|
158 |
+
text = (
|
159 |
+
bytearray([self.byte_decoder[c] for c in text])
|
160 |
+
.decode("utf-8", errors="replace")
|
161 |
+
.replace("</w>", " ")
|
162 |
+
)
|
163 |
+
return text
|
glide_text2im/tokenizer/vocab.bpe.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce239dd5a898827423fee00e3f7ab37de7900f247f2ba360753d860e8a46524d
|
3 |
+
size 213544
|