Spaces:
Runtime error
Runtime error
Freiburg-AI-Research
commited on
Commit
Β·
a0c720e
1
Parent(s):
0990b67
Upload 6 files
Browse files- glide_text2im/clip/__init__.py +0 -0
- glide_text2im/clip/attention.py +179 -0
- glide_text2im/clip/config.yaml +18 -0
- glide_text2im/clip/encoders.py +497 -0
- glide_text2im/clip/model_creation.py +117 -0
- glide_text2im/clip/utils.py +97 -0
glide_text2im/clip/__init__.py
ADDED
File without changes
|
glide_text2im/clip/attention.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from itertools import product
|
4 |
+
from typing import Any, Optional
|
5 |
+
|
6 |
+
import attr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
@attr.s
|
12 |
+
class AttentionMask(ABC):
|
13 |
+
query_context_size: int = attr.ib(validator=lambda i, a, x: x >= 1) # type: ignore
|
14 |
+
key_context_size: int = attr.ib(validator=lambda i, a, x: x >= 1) # type: ignore
|
15 |
+
block_size: int = attr.ib(validator=lambda i, a, x: x >= 1) # type: ignore
|
16 |
+
n_head: int = attr.ib(validator=lambda i, a, x: x >= 1) # type: ignore
|
17 |
+
is_head_specific: bool = attr.ib(default=False)
|
18 |
+
n_query_pad: int = attr.ib(default=0)
|
19 |
+
n_key_pad: int = attr.ib(default=0)
|
20 |
+
|
21 |
+
def __attrs_post_init__(self) -> None:
|
22 |
+
if self.query_context_size % self.block_size != 0:
|
23 |
+
raise ValueError()
|
24 |
+
if self.key_context_size % self.block_size != 0:
|
25 |
+
raise ValueError()
|
26 |
+
if self.n_query_pad >= self.query_context_size:
|
27 |
+
raise ValueError()
|
28 |
+
if self.n_key_pad >= self.key_context_size:
|
29 |
+
raise ValueError()
|
30 |
+
|
31 |
+
self.n_query_block = self.query_context_size // self.block_size
|
32 |
+
self.n_key_block = self.key_context_size // self.block_size
|
33 |
+
self.first_pad_query_block_idx = self.n_query_block - int(
|
34 |
+
math.ceil(self.n_query_pad / self.block_size)
|
35 |
+
)
|
36 |
+
self.first_pad_key_block_idx = self.n_key_block - int(
|
37 |
+
math.ceil(self.n_key_pad / self.block_size)
|
38 |
+
)
|
39 |
+
|
40 |
+
def _make_global_layout(self) -> None:
|
41 |
+
if not self.is_head_specific:
|
42 |
+
m = np.ones([self.n_query_block, self.n_key_block], dtype=np.bool)
|
43 |
+
r = product(*[range(n) for n in m.shape])
|
44 |
+
|
45 |
+
for qb, kb in r:
|
46 |
+
m[qb, kb] = np.any(self.block_layout(None, 0, qb, kb, 0))
|
47 |
+
else:
|
48 |
+
m = np.ones([self.n_head, self.n_query_block, self.n_key_block], dtype=np.bool)
|
49 |
+
r = product(*[range(n) for n in m.shape])
|
50 |
+
|
51 |
+
for h, qb, kb in r:
|
52 |
+
m[h, qb, kb] = np.any(self.block_layout(None, h, qb, kb, 0))
|
53 |
+
|
54 |
+
self.global_layout = m
|
55 |
+
|
56 |
+
@abstractmethod
|
57 |
+
def _block_layout(
|
58 |
+
self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
|
59 |
+
) -> np.ndarray:
|
60 |
+
raise NotImplementedError()
|
61 |
+
|
62 |
+
def block_layout(
|
63 |
+
self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
|
64 |
+
) -> np.ndarray:
|
65 |
+
"""
|
66 |
+
`query_idx`, `key_idx` are block-level, zero-based indices.
|
67 |
+
"""
|
68 |
+
|
69 |
+
m = np.ones([self.block_size, self.block_size], dtype=np.bool)
|
70 |
+
|
71 |
+
if query_idx >= self.first_pad_query_block_idx:
|
72 |
+
n_pad = min(
|
73 |
+
self.block_size,
|
74 |
+
(query_idx + 1) * self.block_size - (self.query_context_size - self.n_query_pad),
|
75 |
+
)
|
76 |
+
assert n_pad > 0
|
77 |
+
m[self.block_size - n_pad :] = False
|
78 |
+
if key_idx >= self.first_pad_key_block_idx:
|
79 |
+
n_pad = min(
|
80 |
+
self.block_size,
|
81 |
+
(key_idx + 1) * self.block_size - (self.key_context_size - self.n_key_pad),
|
82 |
+
)
|
83 |
+
assert n_pad > 0
|
84 |
+
m[:, self.block_size - n_pad :] = False
|
85 |
+
|
86 |
+
return m & self._block_layout(blk_shape, head_idx, query_idx, key_idx, blk_idx)
|
87 |
+
|
88 |
+
|
89 |
+
@attr.s
|
90 |
+
class DenseAttentionMask(AttentionMask):
|
91 |
+
def __attrs_post_init__(self) -> None:
|
92 |
+
super().__attrs_post_init__()
|
93 |
+
|
94 |
+
self.global_layout = np.ones([self.n_query_block, self.n_key_block], dtype=np.bool)
|
95 |
+
n_zero_query_blocks = self.n_query_pad // self.block_size
|
96 |
+
n_zero_key_blocks = self.n_key_pad // self.block_size
|
97 |
+
self.global_layout[self.n_query_block - n_zero_query_blocks :] = False
|
98 |
+
self.global_layout[:, self.n_key_block - n_zero_key_blocks :] = False
|
99 |
+
|
100 |
+
def _block_layout(
|
101 |
+
self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
|
102 |
+
) -> np.ndarray:
|
103 |
+
return np.ones([self.block_size, self.block_size], dtype=np.bool)
|
104 |
+
|
105 |
+
|
106 |
+
@attr.s
|
107 |
+
class DenseCausalAttentionMask(AttentionMask):
|
108 |
+
def __attrs_post_init__(self) -> None:
|
109 |
+
super().__attrs_post_init__()
|
110 |
+
|
111 |
+
self.global_layout = np.tril(np.ones([self.n_query_block, self.n_key_block], dtype=np.bool))
|
112 |
+
n_zero_query_blocks = self.n_query_pad // self.block_size
|
113 |
+
n_zero_key_blocks = self.n_key_pad // self.block_size
|
114 |
+
self.global_layout[self.n_query_block - n_zero_query_blocks :] = False
|
115 |
+
self.global_layout[:, self.n_key_block - n_zero_key_blocks :] = False
|
116 |
+
|
117 |
+
def _block_layout(
|
118 |
+
self, blk_shape: Any, head_idx: int, query_idx: int, key_idx: int, blk_idx: int
|
119 |
+
) -> np.ndarray:
|
120 |
+
if query_idx > key_idx:
|
121 |
+
return np.ones(2 * [self.block_size], dtype=np.bool)
|
122 |
+
elif query_idx < key_idx:
|
123 |
+
return np.zeros(2 * [self.block_size], dtype=np.bool)
|
124 |
+
else:
|
125 |
+
return np.tril(np.ones(2 * [self.block_size], dtype=np.bool))
|
126 |
+
|
127 |
+
|
128 |
+
@attr.s(eq=False, repr=False)
|
129 |
+
class AttentionInfo:
|
130 |
+
n_heads: int = attr.ib()
|
131 |
+
ctx_blks_q: int = attr.ib()
|
132 |
+
ctx_blks_k: int = attr.ib()
|
133 |
+
block_size: int = attr.ib()
|
134 |
+
pytorch_attn_bias: Optional[torch.Tensor] = attr.ib()
|
135 |
+
|
136 |
+
|
137 |
+
def to_attention_info(d: AttentionMask) -> AttentionInfo:
|
138 |
+
return AttentionInfo(
|
139 |
+
n_heads=d.n_head,
|
140 |
+
ctx_blks_q=d.n_query_block,
|
141 |
+
ctx_blks_k=d.n_key_block,
|
142 |
+
block_size=d.block_size,
|
143 |
+
pytorch_attn_bias=None,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def make_full_layout(d: AttentionMask) -> np.ndarray:
|
148 |
+
"""
|
149 |
+
Returns the `context_size x context_size` layout matrix described by `d`. If the layout is dependent on the index of
|
150 |
+
the attention head, a `attention_head x context_size x context_size` layout matrix is returned instead.
|
151 |
+
"""
|
152 |
+
|
153 |
+
if not d.is_head_specific:
|
154 |
+
u = np.reshape(d.global_layout, [d.n_query_block, d.n_key_block, 1, 1])
|
155 |
+
r = product(range(d.n_query_block), range(d.n_key_block))
|
156 |
+
v = np.array([d.block_layout(None, 0, i, j, 0) for i, j in r])
|
157 |
+
v = np.reshape(v, [d.n_query_block, d.n_key_block, d.block_size, d.block_size])
|
158 |
+
|
159 |
+
w = u * v
|
160 |
+
w = np.transpose(w, [0, 2, 1, 3])
|
161 |
+
w = np.reshape(w, [d.query_context_size, d.key_context_size])
|
162 |
+
return w
|
163 |
+
else:
|
164 |
+
if len(d.global_layout.shape) == 2:
|
165 |
+
u = np.reshape(d.global_layout, [1, d.n_query_block, d.n_key_block, 1, 1])
|
166 |
+
u = np.tile(u, [d.n_head, 1, 1, 1, 1])
|
167 |
+
elif len(d.global_layout.shape) == 3:
|
168 |
+
u = np.reshape(d.global_layout, [d.n_head, d.n_query_block, d.n_key_block, 1, 1])
|
169 |
+
else:
|
170 |
+
raise RuntimeError()
|
171 |
+
|
172 |
+
s = product(range(d.n_head), range(d.n_query_block), range(d.n_key_block))
|
173 |
+
v = np.array([d.block_layout(None, i, j, k, 0) for i, j, k in s])
|
174 |
+
v = np.reshape(v, [d.n_head, d.n_query_block, d.n_key_block, d.block_size, d.block_size])
|
175 |
+
|
176 |
+
w = u * v
|
177 |
+
w = np.transpose(w, [0, 1, 3, 2, 4])
|
178 |
+
w = np.reshape(w, [d.n_head, d.query_context_size, d.key_context_size])
|
179 |
+
return w
|
glide_text2im/clip/config.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
logit_scale: 100.0
|
2 |
+
|
3 |
+
# Diffusion settings
|
4 |
+
beta_schedule: "squaredcos_cap_v2"
|
5 |
+
n_timesteps: 1000
|
6 |
+
|
7 |
+
# Architecture settings
|
8 |
+
image_size: 64
|
9 |
+
patch_size: 4
|
10 |
+
n_vocab: 65536
|
11 |
+
max_text_len: 77
|
12 |
+
n_embd: 512
|
13 |
+
n_head_state_text: 64
|
14 |
+
n_head_text: 8
|
15 |
+
n_xf_blocks_text: 12
|
16 |
+
n_head_state_image: 64
|
17 |
+
n_head_image: 12
|
18 |
+
n_xf_blocks_image: 12
|
glide_text2im/clip/encoders.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import OrderedDict
|
3 |
+
from typing import List, Optional, Tuple, cast
|
4 |
+
|
5 |
+
import attr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from .attention import (
|
12 |
+
AttentionInfo,
|
13 |
+
DenseAttentionMask,
|
14 |
+
DenseCausalAttentionMask,
|
15 |
+
make_full_layout,
|
16 |
+
to_attention_info,
|
17 |
+
)
|
18 |
+
from .utils import Affine, LayerNorm, zero_key_bias_grad
|
19 |
+
|
20 |
+
# Constants used in the original CLIP implementation.
|
21 |
+
image_channel_means = [122.77093945, 116.74601272, 104.09373519]
|
22 |
+
image_channel_stds = [68.50053285, 66.63215831, 70.32316309]
|
23 |
+
|
24 |
+
|
25 |
+
@attr.s(eq=False, repr=False)
|
26 |
+
class TextEmbedding(nn.Module):
|
27 |
+
n_vocab: int = attr.ib()
|
28 |
+
n_context: int = attr.ib()
|
29 |
+
n_state: int = attr.ib()
|
30 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
31 |
+
|
32 |
+
def __attrs_post_init__(self) -> None:
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
w_voc = torch.empty((self.n_vocab, self.n_state), dtype=torch.float32, device=self.device)
|
36 |
+
w_pos = torch.empty((self.n_context, self.n_state), dtype=torch.float32, device=self.device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
w_voc.normal_(std=0.02)
|
40 |
+
w_pos.normal_(std=0.01)
|
41 |
+
|
42 |
+
self.w_voc = nn.Parameter(w_voc)
|
43 |
+
self.w_pos = nn.Parameter(w_pos)
|
44 |
+
|
45 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
46 |
+
if len(x.shape) != 2:
|
47 |
+
raise ValueError()
|
48 |
+
|
49 |
+
return F.embedding(x, self.w_voc) + self.w_pos[None, :, :]
|
50 |
+
|
51 |
+
|
52 |
+
@attr.s(eq=False, repr=False)
|
53 |
+
class ImageEmbedding(nn.Module):
|
54 |
+
image_size: int = attr.ib()
|
55 |
+
patch_size: int = attr.ib()
|
56 |
+
n_state: int = attr.ib()
|
57 |
+
n_timestep: int = attr.ib(default=0)
|
58 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
59 |
+
|
60 |
+
def __attrs_post_init__(self) -> None:
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
if self.image_size % self.patch_size != 0:
|
64 |
+
raise ValueError()
|
65 |
+
|
66 |
+
n_patch = self.image_size // self.patch_size
|
67 |
+
patch_proj = torch.empty(
|
68 |
+
(self.n_state, 3) + 2 * (self.patch_size,), dtype=torch.float32, device=self.device
|
69 |
+
)
|
70 |
+
w_pos = torch.empty(
|
71 |
+
(1 + n_patch ** 2, self.n_state), dtype=torch.float32, device=self.device
|
72 |
+
)
|
73 |
+
|
74 |
+
with torch.no_grad():
|
75 |
+
if self.n_timestep == 0:
|
76 |
+
pred_state = torch.empty((self.n_state,), dtype=torch.float32, device=self.device)
|
77 |
+
pred_state.normal_(std=1 / np.sqrt(self.n_state))
|
78 |
+
self.pred_state = nn.Parameter(pred_state)
|
79 |
+
else:
|
80 |
+
w_t = torch.empty(
|
81 |
+
(self.n_timestep, self.n_state), dtype=torch.float32, device=self.device
|
82 |
+
)
|
83 |
+
w_t.normal_(std=1 / np.sqrt(self.n_state))
|
84 |
+
self.w_t = nn.Parameter(w_t)
|
85 |
+
|
86 |
+
patch_proj.normal_(std=np.sqrt(2 / (self.n_state * self.patch_size ** 2)))
|
87 |
+
w_pos.normal_(std=1 / np.sqrt(self.n_state))
|
88 |
+
|
89 |
+
self.patch_proj = nn.Parameter(patch_proj)
|
90 |
+
self.w_pos = nn.Parameter(w_pos)
|
91 |
+
|
92 |
+
self.channel_means = torch.tensor(
|
93 |
+
image_channel_means, dtype=torch.float32, device=self.device
|
94 |
+
)[None, :, None, None]
|
95 |
+
self.channel_stds = torch.tensor(
|
96 |
+
image_channel_stds, dtype=torch.float32, device=self.device
|
97 |
+
)[None, :, None, None]
|
98 |
+
self.ln = LayerNorm(self.n_state, eps=1e-5, device=self.device)
|
99 |
+
|
100 |
+
def forward(self, x: torch.Tensor, t: Optional[torch.Tensor] = None) -> torch.Tensor:
|
101 |
+
if len(x.shape) != 4:
|
102 |
+
raise ValueError("input should be 4d")
|
103 |
+
if x.shape[1] != 3:
|
104 |
+
raise ValueError("input should have 3 channels")
|
105 |
+
if not (x.shape[2] == self.image_size and x.shape[3] == self.image_size):
|
106 |
+
raise ValueError(f"input is not {self.image_size} x {self.image_size}")
|
107 |
+
|
108 |
+
if (self.n_timestep == 0 and t is not None) or (self.n_timestep != 0 and t is None):
|
109 |
+
raise ValueError()
|
110 |
+
if self.n_timestep != 0:
|
111 |
+
assert t is not None
|
112 |
+
if len(t.shape) != 1:
|
113 |
+
raise ValueError()
|
114 |
+
if t.shape[0] != x.shape[0]:
|
115 |
+
raise ValueError()
|
116 |
+
|
117 |
+
x = (x - self.channel_means) / self.channel_stds
|
118 |
+
x = F.conv2d(x, self.patch_proj, stride=self.patch_size)
|
119 |
+
x = x.reshape(x.shape[0], self.n_state, (self.image_size // self.patch_size) ** 2).permute(
|
120 |
+
0, 2, 1
|
121 |
+
)
|
122 |
+
|
123 |
+
sot = (
|
124 |
+
self.pred_state[None, None].expand(x.shape[0], -1, -1)
|
125 |
+
if self.n_timestep == 0
|
126 |
+
else F.embedding(cast(torch.Tensor, t), self.w_t)[:, None]
|
127 |
+
)
|
128 |
+
x = torch.cat((sot, x), dim=1) + self.w_pos[None]
|
129 |
+
return self.ln(x)
|
130 |
+
|
131 |
+
|
132 |
+
@attr.s(eq=False, repr=False)
|
133 |
+
class AttentionResblock(nn.Module):
|
134 |
+
n_state: int = attr.ib()
|
135 |
+
n_resblocks: int = attr.ib()
|
136 |
+
attn_fn: AttentionInfo = attr.ib()
|
137 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
138 |
+
|
139 |
+
def __attrs_post_init__(self) -> None:
|
140 |
+
super().__init__()
|
141 |
+
|
142 |
+
self.n_head_state = self.n_state // self.attn_fn.n_heads
|
143 |
+
self.qk_scale = 1 / np.sqrt(self.n_head_state)
|
144 |
+
|
145 |
+
self.ln = LayerNorm(self.n_state, eps=1e-5, device=self.device)
|
146 |
+
self.f_q = Affine(
|
147 |
+
self.n_state,
|
148 |
+
self.n_state,
|
149 |
+
std=1 / math.sqrt(self.n_state),
|
150 |
+
use_bias=True,
|
151 |
+
bias_filter_fn=zero_key_bias_grad,
|
152 |
+
device=self.device,
|
153 |
+
)
|
154 |
+
self.f_k = Affine(
|
155 |
+
self.n_state,
|
156 |
+
self.n_state,
|
157 |
+
std=1 / math.sqrt(self.n_state),
|
158 |
+
use_bias=False,
|
159 |
+
bias_filter_fn=zero_key_bias_grad,
|
160 |
+
device=self.device,
|
161 |
+
)
|
162 |
+
self.f_v = Affine(
|
163 |
+
self.n_state,
|
164 |
+
self.n_state,
|
165 |
+
std=1 / math.sqrt(self.n_state),
|
166 |
+
use_bias=True,
|
167 |
+
bias_filter_fn=zero_key_bias_grad,
|
168 |
+
device=self.device,
|
169 |
+
)
|
170 |
+
self.f_c = Affine(
|
171 |
+
self.n_state,
|
172 |
+
self.n_state,
|
173 |
+
use_bias=True,
|
174 |
+
std=1 / np.sqrt(self.n_state * self.n_resblocks ** 2),
|
175 |
+
device=self.device,
|
176 |
+
) # XXX
|
177 |
+
|
178 |
+
def forward(self, m: torch.Tensor) -> torch.Tensor:
|
179 |
+
n_context = m.shape[1]
|
180 |
+
n_query_pad = self.attn_fn.ctx_blks_q * self.attn_fn.block_size - n_context
|
181 |
+
n_key_pad = self.attn_fn.ctx_blks_k * self.attn_fn.block_size - n_context
|
182 |
+
assert n_query_pad >= 0
|
183 |
+
assert n_key_pad >= 0
|
184 |
+
|
185 |
+
r = m
|
186 |
+
r = self.ln(r)
|
187 |
+
q, k, v = self.f_q(r), self.f_k(r), self.f_v(r)
|
188 |
+
|
189 |
+
if n_query_pad != 0:
|
190 |
+
q = F.pad(q, (0, 0, 0, n_query_pad))
|
191 |
+
|
192 |
+
if n_key_pad != 0:
|
193 |
+
k = F.pad(k, (0, 0, 0, n_key_pad))
|
194 |
+
v = F.pad(v, (0, 0, 0, n_key_pad))
|
195 |
+
|
196 |
+
q = q.view([q.shape[0], -1, self.attn_fn.n_heads, self.n_head_state]).permute((0, 2, 1, 3))
|
197 |
+
k = k.view([k.shape[0], -1, self.attn_fn.n_heads, self.n_head_state]).permute((0, 2, 1, 3))
|
198 |
+
v = v.view([v.shape[0], -1, self.attn_fn.n_heads, self.n_head_state]).permute((0, 2, 1, 3))
|
199 |
+
w = torch.einsum(
|
200 |
+
"bhcd,bhkd->bhck", q * math.sqrt(self.qk_scale), k * math.sqrt(self.qk_scale)
|
201 |
+
)
|
202 |
+
|
203 |
+
if hasattr(self.attn_fn, "pytorch_attn_bias"):
|
204 |
+
bias = self.attn_fn.pytorch_attn_bias
|
205 |
+
assert len(bias.shape) in {2, 3}
|
206 |
+
|
207 |
+
if len(bias.shape) == 2:
|
208 |
+
w = torch.softmax(w + self.attn_fn.pytorch_attn_bias[None, None], dim=-1)
|
209 |
+
elif len(bias.shape) == 3:
|
210 |
+
w = torch.softmax(w + self.attn_fn.pytorch_attn_bias[None], dim=-1)
|
211 |
+
else:
|
212 |
+
w = torch.softmax(w, dim=-1)
|
213 |
+
|
214 |
+
r = torch.einsum("bhck,bhkd->bhcd", w, v)
|
215 |
+
r = r.permute((0, 2, 1, 3)).reshape((r.shape[0], -1, self.n_state))
|
216 |
+
|
217 |
+
if n_query_pad != 0:
|
218 |
+
r = r[:, :-n_query_pad]
|
219 |
+
|
220 |
+
assert r.shape[1] == n_context
|
221 |
+
|
222 |
+
r = self.f_c(r)
|
223 |
+
return m + r
|
224 |
+
|
225 |
+
|
226 |
+
@attr.s(eq=False, repr=False)
|
227 |
+
class FullyConnectedResblock(nn.Module):
|
228 |
+
"""
|
229 |
+
Not imported from other files because we retain Alec's original inits.
|
230 |
+
"""
|
231 |
+
|
232 |
+
n_state: int = attr.ib()
|
233 |
+
n_resblocks: int = attr.ib()
|
234 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
235 |
+
|
236 |
+
def __attrs_post_init__(self) -> None:
|
237 |
+
super().__init__()
|
238 |
+
|
239 |
+
self.ln = LayerNorm(self.n_state, eps=1e-5, device=self.device)
|
240 |
+
self.f_1 = Affine(
|
241 |
+
self.n_state,
|
242 |
+
4 * self.n_state,
|
243 |
+
use_bias=True,
|
244 |
+
std=np.sqrt(2 / (4 * self.n_state)),
|
245 |
+
device=self.device,
|
246 |
+
)
|
247 |
+
self.f_2 = Affine(
|
248 |
+
4 * self.n_state,
|
249 |
+
self.n_state,
|
250 |
+
use_bias=True,
|
251 |
+
std=1 / np.sqrt(self.n_state * self.n_resblocks ** 2),
|
252 |
+
device=self.device,
|
253 |
+
) # XXX
|
254 |
+
|
255 |
+
def forward(self, m: torch.Tensor) -> torch.Tensor:
|
256 |
+
r = m
|
257 |
+
r = self.ln(r)
|
258 |
+
|
259 |
+
r = self.f_2(F.gelu(self.f_1(r)))
|
260 |
+
return m + r
|
261 |
+
|
262 |
+
|
263 |
+
@attr.s(eq=False, repr=False)
|
264 |
+
class TransformerBlock(nn.Module):
|
265 |
+
n_state: int = attr.ib()
|
266 |
+
n_resblocks: int = attr.ib()
|
267 |
+
attn_fn: AttentionInfo = attr.ib()
|
268 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
269 |
+
|
270 |
+
def __attrs_post_init__(self) -> None:
|
271 |
+
super().__init__()
|
272 |
+
|
273 |
+
self.f_attn = AttentionResblock(
|
274 |
+
self.n_state,
|
275 |
+
self.n_resblocks,
|
276 |
+
self.attn_fn,
|
277 |
+
self.device,
|
278 |
+
)
|
279 |
+
self.f_mlp = FullyConnectedResblock(self.n_state, self.n_resblocks, self.device)
|
280 |
+
|
281 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
282 |
+
return self.f_mlp(self.f_attn(x))
|
283 |
+
|
284 |
+
|
285 |
+
@attr.s(eq=False, repr=False)
|
286 |
+
class TextFeatureExtractor(nn.Module):
|
287 |
+
n_state: int = attr.ib()
|
288 |
+
n_embd: int = attr.ib()
|
289 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
290 |
+
|
291 |
+
def __attrs_post_init__(self) -> None:
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.ln = LayerNorm(self.n_state, eps=1e-5, device=self.device)
|
295 |
+
self.f = Affine(self.n_state, self.n_embd, use_bias=False, device=self.device)
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self, text: torch.Tensor, text_len: torch.Tensor, return_probe_features: bool = False
|
299 |
+
) -> torch.Tensor:
|
300 |
+
if len(text.shape) != 3:
|
301 |
+
raise ValueError("expected text to be 3d")
|
302 |
+
if len(text_len.shape) != 1:
|
303 |
+
raise ValueError("expected text length to be 1d")
|
304 |
+
if text.shape[0] != text_len.shape[0]:
|
305 |
+
raise ValueError("text and text_len have inconsistent batch dimensions")
|
306 |
+
|
307 |
+
index = (text_len - 1)[:, None, None].expand(-1, 1, text.shape[2])
|
308 |
+
x = torch.gather(text, dim=1, index=index)
|
309 |
+
assert list(x.shape) == [text.shape[0], 1, text.shape[2]]
|
310 |
+
|
311 |
+
if return_probe_features:
|
312 |
+
return x[:, 0]
|
313 |
+
|
314 |
+
x = self.ln(x)
|
315 |
+
return self.f(x[:, 0])
|
316 |
+
|
317 |
+
|
318 |
+
@attr.s(eq=False, repr=False)
|
319 |
+
class ImageFeatureExtractor(nn.Module):
|
320 |
+
n_state: int = attr.ib()
|
321 |
+
n_embd: int = attr.ib()
|
322 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
323 |
+
|
324 |
+
def __attrs_post_init__(self) -> None:
|
325 |
+
super().__init__()
|
326 |
+
|
327 |
+
self.ln = LayerNorm(self.n_state, eps=1e-5, device=self.device)
|
328 |
+
self.f = Affine(self.n_state, self.n_embd, use_bias=False, device=self.device)
|
329 |
+
|
330 |
+
def forward(self, x: torch.Tensor, return_probe_features: bool = False) -> torch.Tensor:
|
331 |
+
if return_probe_features:
|
332 |
+
return x[:, 0]
|
333 |
+
|
334 |
+
x = self.ln(x[:, :1])
|
335 |
+
return self.f(x[:, 0])
|
336 |
+
|
337 |
+
|
338 |
+
@attr.s(eq=False, repr=False)
|
339 |
+
class TextEncoder(nn.Module):
|
340 |
+
n_bpe_vocab: int = attr.ib()
|
341 |
+
max_text_len: int = attr.ib()
|
342 |
+
n_embd: int = attr.ib()
|
343 |
+
n_head: int = attr.ib()
|
344 |
+
n_xf_blocks: int = attr.ib()
|
345 |
+
n_head_state: int = attr.ib(default=64)
|
346 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
347 |
+
block_size: int = attr.ib(init=False, default=32)
|
348 |
+
|
349 |
+
def __attrs_post_init__(self) -> None:
|
350 |
+
super().__init__()
|
351 |
+
|
352 |
+
self.n_state = self.n_head * self.n_head_state
|
353 |
+
n_rounded_context = self.block_size * int(math.ceil(self.max_text_len / self.block_size))
|
354 |
+
n_pad = n_rounded_context - self.max_text_len
|
355 |
+
|
356 |
+
args = (
|
357 |
+
n_rounded_context,
|
358 |
+
n_rounded_context,
|
359 |
+
self.block_size,
|
360 |
+
self.n_head,
|
361 |
+
False,
|
362 |
+
n_pad,
|
363 |
+
n_pad,
|
364 |
+
)
|
365 |
+
mask = DenseCausalAttentionMask(*args)
|
366 |
+
attn_fn = to_attention_info(mask)
|
367 |
+
|
368 |
+
m = 1 - make_full_layout(mask).astype(np.float32)
|
369 |
+
m[m == 1] = -1e10
|
370 |
+
attn_fn.pytorch_attn_bias = torch.from_numpy(m).to(self.device)
|
371 |
+
|
372 |
+
blocks: List[Tuple[str, nn.Module]] = [
|
373 |
+
(
|
374 |
+
"input",
|
375 |
+
TextEmbedding(
|
376 |
+
self.n_bpe_vocab, self.max_text_len, self.n_state, device=self.device
|
377 |
+
),
|
378 |
+
)
|
379 |
+
]
|
380 |
+
|
381 |
+
for i in range(self.n_xf_blocks):
|
382 |
+
blocks.append(
|
383 |
+
(
|
384 |
+
f"block_{i}",
|
385 |
+
TransformerBlock(self.n_state, 2 * self.n_xf_blocks, attn_fn, self.device),
|
386 |
+
)
|
387 |
+
)
|
388 |
+
|
389 |
+
blocks.append(
|
390 |
+
("output", TextFeatureExtractor(self.n_state, self.n_embd, device=self.device))
|
391 |
+
)
|
392 |
+
|
393 |
+
self.blocks = nn.ModuleDict(OrderedDict(blocks))
|
394 |
+
|
395 |
+
def forward(
|
396 |
+
self,
|
397 |
+
text: torch.Tensor,
|
398 |
+
text_len: torch.Tensor,
|
399 |
+
return_probe_features: bool = False,
|
400 |
+
) -> torch.Tensor:
|
401 |
+
|
402 |
+
n_batch = text.shape[0]
|
403 |
+
h = self.blocks["input"](text)
|
404 |
+
|
405 |
+
for i in range(self.n_xf_blocks):
|
406 |
+
h = self.blocks[f"block_{i}"](h)
|
407 |
+
|
408 |
+
h = self.blocks["output"](h, text_len, return_probe_features=return_probe_features)
|
409 |
+
|
410 |
+
assert list(h.shape) == [
|
411 |
+
n_batch,
|
412 |
+
self.n_embd if not return_probe_features else self.n_state,
|
413 |
+
]
|
414 |
+
return h
|
415 |
+
|
416 |
+
|
417 |
+
@attr.s(eq=False, repr=False)
|
418 |
+
class ImageEncoder(nn.Module):
|
419 |
+
image_size: int = attr.ib()
|
420 |
+
patch_size: int = attr.ib()
|
421 |
+
n_embd: int = attr.ib()
|
422 |
+
n_head: int = attr.ib()
|
423 |
+
n_xf_blocks: int = attr.ib()
|
424 |
+
n_head_state: int = attr.ib(default=64)
|
425 |
+
n_timestep: int = attr.ib(default=0)
|
426 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
427 |
+
block_size: int = attr.ib(init=False, default=32)
|
428 |
+
|
429 |
+
def __attrs_post_init__(self) -> None:
|
430 |
+
super().__init__()
|
431 |
+
|
432 |
+
self.n_state = self.n_head * self.n_head_state
|
433 |
+
self.n_context = 1 + (self.image_size // self.patch_size) ** 2
|
434 |
+
n_rounded_context = self.block_size * int(math.ceil(self.n_context / self.block_size))
|
435 |
+
n_pad = n_rounded_context - self.n_context
|
436 |
+
|
437 |
+
args = (
|
438 |
+
n_rounded_context,
|
439 |
+
n_rounded_context,
|
440 |
+
self.block_size,
|
441 |
+
self.n_head,
|
442 |
+
False,
|
443 |
+
n_pad,
|
444 |
+
n_pad,
|
445 |
+
)
|
446 |
+
mask = DenseAttentionMask(*args)
|
447 |
+
attn_fn = to_attention_info(mask)
|
448 |
+
|
449 |
+
m = 1 - make_full_layout(mask).astype(np.float32)
|
450 |
+
m[m == 1] = -1e10
|
451 |
+
attn_fn.pytorch_attn_bias = torch.from_numpy(m).to(self.device)
|
452 |
+
|
453 |
+
blocks: List[Tuple[str, nn.Module]] = [
|
454 |
+
(
|
455 |
+
"input",
|
456 |
+
ImageEmbedding(
|
457 |
+
self.image_size,
|
458 |
+
self.patch_size,
|
459 |
+
self.n_state,
|
460 |
+
n_timestep=self.n_timestep,
|
461 |
+
device=self.device,
|
462 |
+
),
|
463 |
+
)
|
464 |
+
]
|
465 |
+
|
466 |
+
for i in range(self.n_xf_blocks):
|
467 |
+
blocks.append(
|
468 |
+
(
|
469 |
+
f"block_{i}",
|
470 |
+
TransformerBlock(self.n_state, 2 * self.n_xf_blocks, attn_fn, self.device),
|
471 |
+
)
|
472 |
+
)
|
473 |
+
|
474 |
+
blocks.append(("output", ImageFeatureExtractor(self.n_state, self.n_embd, self.device)))
|
475 |
+
|
476 |
+
self.blocks = nn.ModuleDict(OrderedDict(blocks))
|
477 |
+
|
478 |
+
def forward(
|
479 |
+
self,
|
480 |
+
image: torch.Tensor,
|
481 |
+
timesteps: Optional[torch.Tensor] = None,
|
482 |
+
return_probe_features: bool = False,
|
483 |
+
) -> torch.Tensor:
|
484 |
+
n_batch = image.shape[0]
|
485 |
+
h = self.blocks["input"](image, t=timesteps)
|
486 |
+
|
487 |
+
for i in range(self.n_xf_blocks):
|
488 |
+
h = self.blocks[f"block_{i}"](h)
|
489 |
+
|
490 |
+
h = self.blocks["output"](h, return_probe_features=return_probe_features)
|
491 |
+
|
492 |
+
assert list(h.shape) == [
|
493 |
+
n_batch,
|
494 |
+
self.n_embd if not return_probe_features else self.n_state,
|
495 |
+
]
|
496 |
+
|
497 |
+
return h
|
glide_text2im/clip/model_creation.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import lru_cache
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import attr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import yaml
|
10 |
+
from glide_text2im.tokenizer.simple_tokenizer import SimpleTokenizer
|
11 |
+
|
12 |
+
from .encoders import ImageEncoder, TextEncoder
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def default_config_path() -> str:
|
17 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "config.yaml")
|
18 |
+
|
19 |
+
|
20 |
+
@attr.s
|
21 |
+
class CLIPModel:
|
22 |
+
config: Dict[str, Any] = attr.ib()
|
23 |
+
text_encoder: nn.Module = attr.ib()
|
24 |
+
image_encoder: nn.Module = attr.ib()
|
25 |
+
logit_scale: torch.Tensor = attr.ib()
|
26 |
+
device: torch.device = attr.ib()
|
27 |
+
tokenizer: SimpleTokenizer = attr.ib()
|
28 |
+
|
29 |
+
def encode_prompts(self, prompts: List[str]) -> Tuple[torch.Tensor, torch.Tensor]:
|
30 |
+
tokens = []
|
31 |
+
lens = []
|
32 |
+
for prompt in prompts:
|
33 |
+
sub_tokens, sub_len = self.tokenizer.padded_tokens_and_len(
|
34 |
+
self.tokenizer.encode(prompt), self.text_encoder.max_text_len
|
35 |
+
)
|
36 |
+
tokens.append(sub_tokens)
|
37 |
+
lens.append(sub_len)
|
38 |
+
return (
|
39 |
+
torch.tensor(tokens).to(dtype=torch.long, device=self.device),
|
40 |
+
torch.tensor(lens).to(dtype=torch.long, device=self.device),
|
41 |
+
)
|
42 |
+
|
43 |
+
def text_embeddings(self, prompts: List[str]) -> torch.Tensor:
|
44 |
+
tokens, lens = self.encode_prompts(prompts)
|
45 |
+
z_t = self.text_encoder(tokens, lens)
|
46 |
+
return z_t / (torch.linalg.norm(z_t, dim=-1, keepdim=True) + 1e-12)
|
47 |
+
|
48 |
+
def image_embeddings(self, images: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
49 |
+
z_i = self.image_encoder((images + 1) * 127.5, t)
|
50 |
+
return z_i / (torch.linalg.norm(z_i, dim=-1, keepdim=True) + 1e-12)
|
51 |
+
|
52 |
+
def cond_fn(self, prompts: List[str], grad_scale: float) -> Callable[..., torch.Tensor]:
|
53 |
+
with torch.no_grad():
|
54 |
+
z_t = self.text_embeddings(prompts)
|
55 |
+
|
56 |
+
def cond_fn(x, t, grad_scale=grad_scale, **kwargs):
|
57 |
+
with torch.enable_grad():
|
58 |
+
x_var = x.detach().requires_grad_(True)
|
59 |
+
z_i = self.image_embeddings(x_var, t)
|
60 |
+
loss = torch.exp(self.logit_scale) * (z_t * z_i).sum()
|
61 |
+
grad = torch.autograd.grad(loss, x_var)[0].detach()
|
62 |
+
return grad * grad_scale
|
63 |
+
|
64 |
+
return cond_fn
|
65 |
+
|
66 |
+
|
67 |
+
def create_clip_model(
|
68 |
+
config_path: Optional[str] = None,
|
69 |
+
device: Optional[torch.device] = None,
|
70 |
+
tokenizer: Optional[SimpleTokenizer] = None,
|
71 |
+
) -> CLIPModel:
|
72 |
+
if config_path is None:
|
73 |
+
config_path = default_config_path()
|
74 |
+
if device is None:
|
75 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
76 |
+
if tokenizer is None:
|
77 |
+
tokenizer = SimpleTokenizer()
|
78 |
+
|
79 |
+
with open(config_path, "r") as f:
|
80 |
+
config = yaml.load(f, Loader=yaml.SafeLoader)
|
81 |
+
|
82 |
+
text_encoder = TextEncoder(
|
83 |
+
n_bpe_vocab=config["n_vocab"],
|
84 |
+
max_text_len=config["max_text_len"],
|
85 |
+
n_embd=config["n_embd"],
|
86 |
+
n_head=config["n_head_text"],
|
87 |
+
n_xf_blocks=config["n_xf_blocks_text"],
|
88 |
+
n_head_state=config["n_head_state_text"],
|
89 |
+
device=device,
|
90 |
+
)
|
91 |
+
|
92 |
+
image_encoder = ImageEncoder(
|
93 |
+
image_size=config["image_size"],
|
94 |
+
patch_size=config["patch_size"],
|
95 |
+
n_embd=config["n_embd"],
|
96 |
+
n_head=config["n_head_image"],
|
97 |
+
n_xf_blocks=config["n_xf_blocks_image"],
|
98 |
+
n_head_state=config["n_head_state_image"],
|
99 |
+
n_timestep=config["n_timesteps"],
|
100 |
+
device=device,
|
101 |
+
)
|
102 |
+
|
103 |
+
logit_scale = torch.tensor(
|
104 |
+
np.log(config["logit_scale"]),
|
105 |
+
dtype=torch.float32,
|
106 |
+
device=device,
|
107 |
+
requires_grad=False,
|
108 |
+
)
|
109 |
+
|
110 |
+
return CLIPModel(
|
111 |
+
config=config,
|
112 |
+
text_encoder=text_encoder,
|
113 |
+
image_encoder=image_encoder,
|
114 |
+
logit_scale=logit_scale,
|
115 |
+
device=device,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
)
|
glide_text2im/clip/utils.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Callable, Optional
|
3 |
+
|
4 |
+
import attr
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
FilterFn = Callable[[torch.Tensor], torch.Tensor]
|
10 |
+
|
11 |
+
|
12 |
+
class ZeroKeyBiasGrad(torch.autograd.Function):
|
13 |
+
@staticmethod
|
14 |
+
def forward(ctx, x):
|
15 |
+
return x
|
16 |
+
|
17 |
+
@staticmethod
|
18 |
+
def backward(ctx, output_grad):
|
19 |
+
output_grad = output_grad.clone()
|
20 |
+
output_grad.chunk(3)[1].zero_()
|
21 |
+
return output_grad
|
22 |
+
|
23 |
+
|
24 |
+
def zero_key_bias_grad(x: torch.Tensor) -> torch.Tensor:
|
25 |
+
return ZeroKeyBiasGrad.apply(x)
|
26 |
+
|
27 |
+
|
28 |
+
@attr.s(eq=False, repr=False)
|
29 |
+
class LayerNorm(nn.Module):
|
30 |
+
n_state: int = attr.ib()
|
31 |
+
eps: float = attr.ib(default=1e-6)
|
32 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
33 |
+
|
34 |
+
def __attrs_post_init__(self) -> None:
|
35 |
+
super().__init__()
|
36 |
+
self.g = nn.Parameter(torch.ones((self.n_state,), dtype=torch.float32, device=self.device))
|
37 |
+
self.b = nn.Parameter(torch.zeros((self.n_state,), dtype=torch.float32, device=self.device))
|
38 |
+
self.g.weight_decay_level = "disable" # type: ignore
|
39 |
+
self.b.weight_decay_level = "disable" # type: ignore
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
42 |
+
return F.layer_norm(
|
43 |
+
x.type(torch.float32), torch.Size((self.n_state,)), self.g, self.b, self.eps
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
@attr.s(eq=False, repr=False)
|
48 |
+
class Affine(nn.Module):
|
49 |
+
n_in: int = attr.ib()
|
50 |
+
n_out: int = attr.ib()
|
51 |
+
use_bias: bool = attr.ib(default=True)
|
52 |
+
use_admnet_init: bool = attr.ib(default=False)
|
53 |
+
std: Optional[float] = attr.ib(default=None)
|
54 |
+
extra_init_scale: Optional[float] = attr.ib(default=None)
|
55 |
+
bias_filter_fn: FilterFn = attr.ib(default=lambda x: x)
|
56 |
+
device: torch.device = attr.ib(default=torch.device("cuda"))
|
57 |
+
|
58 |
+
def __attrs_post_init__(self) -> None:
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
if not self.use_admnet_init:
|
62 |
+
self.std = self.std if self.std is not None else math.sqrt(2 / (self.n_in + self.n_out))
|
63 |
+
self.std = (
|
64 |
+
self.std if self.extra_init_scale is None else self.std * self.extra_init_scale
|
65 |
+
)
|
66 |
+
|
67 |
+
w = torch.empty((self.n_out, self.n_in), dtype=torch.float32, device=self.device)
|
68 |
+
self.w = nn.Parameter(w)
|
69 |
+
|
70 |
+
if self.use_bias:
|
71 |
+
self.b = nn.Parameter(
|
72 |
+
torch.zeros((self.n_out,), dtype=torch.float32, device=self.device)
|
73 |
+
)
|
74 |
+
self.b.weight_decay_level = "disable" # type: ignore
|
75 |
+
else:
|
76 |
+
if self.extra_init_scale is not None:
|
77 |
+
raise ValueError("extra_init_scale incompatible with admnet init")
|
78 |
+
|
79 |
+
w = torch.empty((self.n_out, self.n_in), dtype=torch.float32, device=self.device)
|
80 |
+
|
81 |
+
if self.use_bias:
|
82 |
+
b = torch.empty((self.n_out,), dtype=torch.float32, device=self.device)
|
83 |
+
|
84 |
+
self.w = nn.Parameter(w)
|
85 |
+
|
86 |
+
if self.use_bias:
|
87 |
+
self.b = nn.Parameter(b)
|
88 |
+
self.b.weight_decay_level = "disable" # type: ignore
|
89 |
+
|
90 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
91 |
+
w = self.w if self.w.dtype == x.dtype else self.w.to(x.dtype)
|
92 |
+
b = (
|
93 |
+
self.bias_filter_fn(self.b if self.b.dtype == x.dtype else self.b.to(x.dtype))
|
94 |
+
if self.use_bias
|
95 |
+
else None
|
96 |
+
)
|
97 |
+
return F.linear(x, w, b)
|