Freiburg-AI-Research commited on
Commit
b12acb0
Β·
1 Parent(s): fa54bae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
 
2
  import os
3
  os.system('pip install -e .')
@@ -240,12 +242,12 @@ def to_base64(pil_image):
240
  return base64.b64encode(buffered.getvalue())
241
 
242
  title = "Interactive demo: glide-text2im dermoscopic image generator"
243
- description = "Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation"
244
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
245
  examples =["melanoma"]
246
 
247
  iface = gr.Interface(fn=sample,
248
- inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease; benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
249
  outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
250
  title=title,
251
  description=description,
 
1
+ #credits to Valhalla for his space: https://huggingface.co/spaces/valhalla/glide-text2im that was used to build this app.
2
+ #credits to the researchers of OpenAI for providing the text2img algorithm
3
 
4
  import os
5
  os.system('pip install -e .')
 
242
  return base64.b64encode(buffered.getvalue())
243
 
244
  title = "Interactive demo: glide-text2im dermoscopic image generator"
245
+ description = 'Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation. Please cite our research paper with the title "Finetuning of GLIDE stable diffusion model for AI-based text-conditional image synthesis of dermoscopic images"'
246
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
247
  examples =["melanoma"]
248
 
249
  iface = gr.Interface(fn=sample,
250
+ inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease, "benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
251
  outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
252
  title=title,
253
  description=description,