Freiburg-AI-Research commited on
Commit
cc0b231
Β·
1 Parent(s): b13265a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -242,13 +242,13 @@ def sample(prompt):
242
 
243
 
244
  title = "Interactive demo: glide-text2im dermoscopic image generator"
245
- description = "Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation. Please cite our research paper with the title -Finetuning of GLIDE stable diffusion model for AI-based text-conditional image synthesis of dermoscopic images- when using the generator for your research."
246
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
247
  examples =["melanoma"]
248
 
249
  iface = gr.Interface(fn=sample,
250
  inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease, "benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
251
- outputs=gr.outputs.Image(type="pil", label="Model input + completions").style(height=168, width=168),
252
  title=title,
253
  description=description,
254
  article=article,
 
242
 
243
 
244
  title = "Interactive demo: glide-text2im dermoscopic image generator"
245
+ description = "Demo for the Finetuned version of OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. Please be aware that generation of the image will take up to 20 minutes, as CPU is used for the generation, and the resolution of generated images was limited for faster processing. For research purposes, we recommend using the finetuned model and weights provided here: https://github.com/Freiburg-AI-Research on your local GPU. Please cite our research paper with the title -Finetuning of GLIDE stable diffusion model for AI-based text-conditional image synthesis of dermoscopic images- when using the generator for your research."
246
  article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
247
  examples =["melanoma"]
248
 
249
  iface = gr.Interface(fn=sample,
250
  inputs=gr.inputs.Textbox(label='Which dermoscopic entity would you like to see? Choose one of the following one: "melanoma", "melanocytic nevi", "Actinic keratoses and intraepithelial carcinoma / Bowen disease, "benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses", "basal cell carcinoma", "dermatofibroma", "vascular lesions"'),
251
+ outputs=gr.outputs.Image(type="pil", label="Model input + completions").style(height=256, width=256),
252
  title=title,
253
  description=description,
254
  article=article,