File size: 9,000 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e04ed
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import imageio
import numpy as np

os.system("bash install.sh")

from omegaconf import OmegaConf
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import rembg
import gradio as gr
from dva.io import load_from_config
from dva.ray_marcher import RayMarcher
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from inference import remove_background, resize_foreground, extract_texmesh
from models.diffusion import create_diffusion
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_sview_dit_fp16.pt")
vae_ckpt_path = hf_hub_download(repo_id="frozenburning/3DTopia-XL", filename="model_vae_fp16.pt")

GRADIO_PRIM_VIDEO_PATH = 'prim.mp4'
GRADIO_RGB_VIDEO_PATH = 'rgb.mp4'
GRADIO_MAT_VIDEO_PATH = 'mat.mp4'
GRADIO_GLB_PATH = 'pbr_mesh.glb'
CONFIG_PATH = "./configs/inference_dit.yml"

config = OmegaConf.load(CONFIG_PATH)
config.checkpoint_path = ckpt_path
config.model.vae_checkpoint_path = vae_ckpt_path
# model
model = load_from_config(config.model.generator)
state_dict = torch.load(config.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['ema'])
vae = load_from_config(config.model.vae)
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
vae.load_state_dict(vae_state_dict['model_state_dict'])
conditioner = load_from_config(config.model.conditioner)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vae = vae.to(device)
conditioner = conditioner.to(device)
model = model.to(device)
model.eval()

amp = True
precision_dtype = torch.float16

rm = RayMarcher(
    config.image_height,
    config.image_width,
    **config.rm,
).to(device)

perchannel_norm = False
if "latent_mean" in config.model:
    latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
    latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
    assert latent_mean.shape[-1] == config.model.generator.in_channels
    perchannel_norm = True

config.diffusion.pop("timestep_respacing")
config.model.pop("vae")
config.model.pop("vae_checkpoint_path")
config.model.pop("conditioner")
config.model.pop("generator")
config.model.pop("latent_nf")
config.model.pop("latent_mean")
config.model.pop("latent_std")
model_primx = load_from_config(config.model)
# load rembg
rembg_session = rembg.new_session()

# process function
def process(input_image, input_num_steps=25, input_seed=42, input_cfg=6.0):
    # seed
    torch.manual_seed(input_seed)

    os.makedirs(config.output_dir, exist_ok=True)
    output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH)
    output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH)
    output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH)
    output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH)

    respacing = "ddim{}".format(input_num_steps)
    diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)
    sample_fn = diffusion.ddim_sample_loop_progressive
    fwd_fn = model.forward_with_cfg

    # text-conditioned
    if input_image is None:
        raise NotImplementedError
    # image-conditioned (may also input text, but no text usually works too)
    else:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)
        raw_image = np.array(input_image)
        mask = (raw_image[..., -1][..., None] > 0) * 1
        raw_image = raw_image[..., :3] * mask
        input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
    
    with torch.no_grad():
        latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
        batch = {}
        inf_bs = 1
        inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
        y = conditioner.encoder(input_cond)
        model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
        if input_cfg >= 0:
            model_kwargs['cfg_scale'] = input_cfg
        for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device):
            final_samples = samples
        recon_param = final_samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
        if perchannel_norm:
            recon_param = recon_param / config.model.latent_nf * latent_std + latent_mean
        recon_srt_param = recon_param[:, :, 0:4]
        recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
        recon_feat_param_list = []
        # one-by-one to avoid oom
        for inf_bidx in range(inf_bs):
            if not perchannel_norm:
                decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / config.model.latent_nf)
            else:
                decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
            recon_feat_param_list.append(decoded.detach())
        recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
        # invert normalization
        if not perchannel_norm:
            recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
        recon_feat_param[:, 0:1, ...] /= 5.
        recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
        recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
        recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
        visualize_video_primvolume(config.output_dir, batch, recon_param, 60, rm, device)
        prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
        torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(config.output_dir))

    # exporting GLB mesh
    denoise_param_path = os.path.join(config.output_dir, 'denoised.pt')
    primx_ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
    model_primx.load_state_dict(ckpt_weight)
    model_primx.to(device)
    model_primx.eval()
    with torch.no_grad():
        model_primx.srt_param[:, 1:4] *= 0.85
        extract_texmesh(config.inference, model_primx, output_glb_path, device)

    return output_rgb_video_path, output_prim_video_path, output_mat_video_path, output_glb_path

# gradio UI
_TITLE = '''3DTopia-XL'''

_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://frozenburning.github.io/projects/3DTopia-XL/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/3DTopia-XL"><img src='https://img.shields.io/github/stars/3DTopia/3DTopia-XL?style=social'/></a>
</div>

* Now we offer 1) single image conditioned model, we will release 2) multiview images conditioned model and 3) pure text conditioned model in the future!
* If you find the output unsatisfying, try using different seeds!
'''

block = gr.Blocks(title=_TITLE).queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown('# ' + _TITLE)
    gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Column(scale=1):
            # input image
            input_image = gr.Image(label="image", type='pil')
            # inference steps
            input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=25)
            # random seed
            input_cfg = gr.Slider(label="CFG scale", minimum=0, maximum=15, step=1, value=6)
            # random seed
            input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=42)
            # gen button
            button_gen = gr.Button("Generate")

        with gr.Column(scale=1):
            with gr.Tab("Video"):
                # final video results
                output_rgb_video = gr.Video(label="video")
                output_prim_video = gr.Video(label="video")
                output_mat_video = gr.Video(label="video")
            with gr.Tab("GLB"):
                # glb file
                output_glb = gr.File(label="glb")

        button_gen.click(process, inputs=[input_image, input_num_steps, input_seed, input_cfg], outputs=[output_rgb_video, output_prim_video, output_mat_video, output_glb])
    
    gr.Examples(
        examples=[
            "assets/examples/fruit_elephant.jpg",
            "assets/examples/mei_ling_panda.png",
            "assets/examples/shuai_panda_notail.png",
        ],
        inputs=[input_image],
        outputs=[output_rgb_video, output_prim_video, output_mat_video, output_glb],
        fn=lambda x: process(input_image=x),
        cache_examples=False,
        label='Single Image to 3D PBR Asset'
    )
    
block.launch(server_name="0.0.0.0", share=True)