Spaces:
Running
on
L4
Running
on
L4
FrozenBurning
commited on
Commit
·
93bf50d
1
Parent(s):
fb96ff6
Update app.py
Browse files
app.py
CHANGED
@@ -84,7 +84,6 @@ def process(input_image, input_num_steps, input_seed=42, input_cfg=6.0):
|
|
84 |
output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH)
|
85 |
output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH)
|
86 |
output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH)
|
87 |
-
output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH)
|
88 |
|
89 |
respacing = "ddim{}".format(input_num_steps)
|
90 |
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)
|
@@ -139,7 +138,14 @@ def process(input_image, input_num_steps, input_seed=42, input_cfg=6.0):
|
|
139 |
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
|
140 |
torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(config.output_dir))
|
141 |
|
|
|
|
|
|
|
142 |
# exporting GLB mesh
|
|
|
|
|
|
|
|
|
143 |
denoise_param_path = os.path.join(config.output_dir, 'denoised.pt')
|
144 |
primx_ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
|
145 |
model_primx.load_state_dict(primx_ckpt_weight)
|
@@ -148,8 +154,7 @@ def process(input_image, input_num_steps, input_seed=42, input_cfg=6.0):
|
|
148 |
with torch.no_grad():
|
149 |
model_primx.srt_param[:, 1:4] *= 0.85
|
150 |
extract_texmesh(config.inference, model_primx, config.output_dir, device)
|
151 |
-
|
152 |
-
return output_rgb_video_path, output_prim_video_path, output_mat_video_path, output_glb_path
|
153 |
|
154 |
# gradio UI
|
155 |
_TITLE = '''3DTopia-XL'''
|
@@ -183,15 +188,15 @@ with block:
|
|
183 |
input_seed = gr.Slider(label="random seed", minimum=0, maximum=10000, step=1, value=42)
|
184 |
# gen button
|
185 |
button_gen = gr.Button("Generate")
|
|
|
186 |
|
187 |
with gr.Column(scale=1):
|
188 |
-
with gr.
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
with gr.Tab("GLB"):
|
195 |
# glb file
|
196 |
output_glb = LitModel3D(
|
197 |
label="3D GLB Model",
|
@@ -201,8 +206,33 @@ with block:
|
|
201 |
contrast=1.0,
|
202 |
scale=1.0,
|
203 |
)
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
gr.Examples(
|
208 |
examples=[
|
@@ -211,7 +241,7 @@ with block:
|
|
211 |
"assets/examples/shuai_panda_notail.png",
|
212 |
],
|
213 |
inputs=[input_image],
|
214 |
-
outputs=[output_rgb_video, output_prim_video, output_mat_video,
|
215 |
fn=lambda x: process(input_image=x),
|
216 |
cache_examples=False,
|
217 |
label='Single Image to 3D PBR Asset'
|
|
|
84 |
output_rgb_video_path = os.path.join(config.output_dir, GRADIO_RGB_VIDEO_PATH)
|
85 |
output_prim_video_path = os.path.join(config.output_dir, GRADIO_PRIM_VIDEO_PATH)
|
86 |
output_mat_video_path = os.path.join(config.output_dir, GRADIO_MAT_VIDEO_PATH)
|
|
|
87 |
|
88 |
respacing = "ddim{}".format(input_num_steps)
|
89 |
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion)
|
|
|
138 |
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
|
139 |
torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(config.output_dir))
|
140 |
|
141 |
+
return output_rgb_video_path, output_prim_video_path, output_mat_video_path, gr.update(interactive=True)
|
142 |
+
|
143 |
+
def export_mesh(remesh=False, decimate=100000, mc_resolution=256):
|
144 |
# exporting GLB mesh
|
145 |
+
output_glb_path = os.path.join(config.output_dir, GRADIO_GLB_PATH)
|
146 |
+
config.inference.remesh = remesh
|
147 |
+
config.inference.decimate = decimate
|
148 |
+
config.inference.mc_resolution = mc_resolution
|
149 |
denoise_param_path = os.path.join(config.output_dir, 'denoised.pt')
|
150 |
primx_ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
|
151 |
model_primx.load_state_dict(primx_ckpt_weight)
|
|
|
154 |
with torch.no_grad():
|
155 |
model_primx.srt_param[:, 1:4] *= 0.85
|
156 |
extract_texmesh(config.inference, model_primx, config.output_dir, device)
|
157 |
+
return output_glb_path, gr.update(visible=True)
|
|
|
158 |
|
159 |
# gradio UI
|
160 |
_TITLE = '''3DTopia-XL'''
|
|
|
188 |
input_seed = gr.Slider(label="random seed", minimum=0, maximum=10000, step=1, value=42)
|
189 |
# gen button
|
190 |
button_gen = gr.Button("Generate")
|
191 |
+
export_glb_btn = gr.Button(value="Export GLB", interactive=False)
|
192 |
|
193 |
with gr.Column(scale=1):
|
194 |
+
with gr.Row():
|
195 |
+
# final video results
|
196 |
+
output_rgb_video = gr.Video(label="RGB")
|
197 |
+
output_prim_video = gr.Video(label="Primitives")
|
198 |
+
output_mat_video = gr.Video(label="Material")
|
199 |
+
with gr.Row():
|
|
|
200 |
# glb file
|
201 |
output_glb = LitModel3D(
|
202 |
label="3D GLB Model",
|
|
|
206 |
contrast=1.0,
|
207 |
scale=1.0,
|
208 |
)
|
209 |
+
with gr.Column(visible=False, scale=1.0) as hdr_row:
|
210 |
+
gr.Markdown("""## HDR Environment Map
|
211 |
+
|
212 |
+
Select / Upload an HDR environment map to light the 3D model.
|
213 |
+
""")
|
214 |
+
with gr.Row():
|
215 |
+
hdr_illumination_file = gr.File(
|
216 |
+
label="HDR Envmap", file_types=[".hdr"], file_count="single"
|
217 |
+
)
|
218 |
+
example_hdris = [
|
219 |
+
os.path.join("assets/hdri", f)
|
220 |
+
for f in os.listdir("assets/hdri")
|
221 |
+
]
|
222 |
+
hdr_illumination_example = gr.Examples(
|
223 |
+
examples=example_hdris,
|
224 |
+
inputs=hdr_illumination_file,
|
225 |
+
)
|
226 |
+
|
227 |
+
hdr_illumination_file.change(
|
228 |
+
lambda x: gr.update(env_map=x.name if x is not None else None),
|
229 |
+
inputs=hdr_illumination_file,
|
230 |
+
outputs=[output_glb],
|
231 |
+
)
|
232 |
+
|
233 |
+
button_gen.click(process, inputs=[input_image, input_num_steps, input_seed, input_cfg], outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn])
|
234 |
+
|
235 |
+
export_glb_btn.click(export_mesh, inputs=[], outputs=[output_glb, hdr_row])
|
236 |
|
237 |
gr.Examples(
|
238 |
examples=[
|
|
|
241 |
"assets/examples/shuai_panda_notail.png",
|
242 |
],
|
243 |
inputs=[input_image],
|
244 |
+
outputs=[output_rgb_video, output_prim_video, output_mat_video, export_glb_btn],
|
245 |
fn=lambda x: process(input_image=x),
|
246 |
cache_examples=False,
|
247 |
label='Single Image to 3D PBR Asset'
|