Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import html | |
import glob | |
import uuid | |
import hashlib | |
import requests | |
from tqdm import tqdm | |
os.system("git clone https://github.com/FrozenBurning/SceneDreamer.git") | |
os.system("cp -r SceneDreamer/* ./") | |
pretrained_model = dict(file_url='https://drive.google.com/uc?id=1IFu1vNrgF1EaRqPizyEgN_5Vt7Fyg0Mj', | |
alt_url='', file_size=330571863, | |
file_path='./scenedreamer_released.pt',) | |
def download_file(session, file_spec, use_alt_url=False, chunk_size=128, num_attempts=10): | |
file_path = file_spec['file_path'] | |
if use_alt_url: | |
file_url = file_spec['alt_url'] | |
else: | |
file_url = file_spec['file_url'] | |
file_dir = os.path.dirname(file_path) | |
tmp_path = file_path + '.tmp.' + uuid.uuid4().hex | |
if file_dir: | |
os.makedirs(file_dir, exist_ok=True) | |
progress_bar = tqdm(total=file_spec['file_size'], unit='B', unit_scale=True) | |
for attempts_left in reversed(range(num_attempts)): | |
data_size = 0 | |
progress_bar.reset() | |
try: | |
# Download. | |
data_md5 = hashlib.md5() | |
with session.get(file_url, stream=True) as res: | |
res.raise_for_status() | |
with open(tmp_path, 'wb') as f: | |
for chunk in res.iter_content(chunk_size=chunk_size<<10): | |
progress_bar.update(len(chunk)) | |
f.write(chunk) | |
data_size += len(chunk) | |
data_md5.update(chunk) | |
# Validate. | |
if 'file_size' in file_spec and data_size != file_spec['file_size']: | |
raise IOError('Incorrect file size', file_path) | |
if 'file_md5' in file_spec and data_md5.hexdigest() != file_spec['file_md5']: | |
raise IOError('Incorrect file MD5', file_path) | |
break | |
except Exception as e: | |
# print(e) | |
# Last attempt => raise error. | |
if not attempts_left: | |
raise | |
# Handle Google Drive virus checker nag. | |
if data_size > 0 and data_size < 8192: | |
with open(tmp_path, 'rb') as f: | |
data = f.read() | |
links = [html.unescape(link) for link in data.decode('utf-8').split('"') if 'confirm=t' in link] | |
if len(links) == 1: | |
file_url = requests.compat.urljoin(file_url, links[0]) | |
continue | |
progress_bar.close() | |
# Rename temp file to the correct name. | |
os.replace(tmp_path, file_path) # atomic | |
# Attempt to clean up any leftover temps. | |
for filename in glob.glob(file_path + '.tmp.*'): | |
try: | |
os.remove(filename) | |
except: | |
pass | |
print('Downloading SceneDreamer pretrained model...') | |
with requests.Session() as session: | |
try: | |
download_file(session, pretrained_model) | |
except: | |
print('Google Drive download failed.\n') | |
import os | |
import torch | |
import torch.nn as nn | |
import importlib | |
import argparse | |
from imaginaire.config import Config | |
from imaginaire.utils.cudnn import init_cudnn | |
import gradio as gr | |
from PIL import Image | |
class WrappedModel(nn.Module): | |
r"""Dummy wrapping the module. | |
""" | |
def __init__(self, module): | |
super(WrappedModel, self).__init__() | |
self.module = module | |
def forward(self, *args, **kwargs): | |
r"""PyTorch module forward function overload.""" | |
return self.module(*args, **kwargs) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Training') | |
parser.add_argument('--config', type=str, default='./configs/scenedreamer_inference.yaml', help='Path to the training config file.') | |
parser.add_argument('--checkpoint', default='./scenedreamer_released.pt', | |
help='Checkpoint path.') | |
parser.add_argument('--output_dir', type=str, default='./test/', | |
help='Location to save the image outputs') | |
parser.add_argument('--seed', type=int, default=8888, | |
help='Random seed.') | |
args = parser.parse_args() | |
return args | |
args = parse_args() | |
cfg = Config(args.config) | |
# Initialize cudnn. | |
init_cudnn(cfg.cudnn.deterministic, cfg.cudnn.benchmark) | |
# Initialize data loaders and models. | |
lib_G = importlib.import_module(cfg.gen.type) | |
net_G = lib_G.Generator(cfg.gen, cfg.data) | |
net_G = net_G.to('cuda') | |
net_G = WrappedModel(net_G) | |
if args.checkpoint == '': | |
raise NotImplementedError("No checkpoint is provided for inference!") | |
# Load checkpoint. | |
# trainer.load_checkpoint(cfg, args.checkpoint) | |
checkpoint = torch.load(args.checkpoint, map_location='cpu') | |
net_G.load_state_dict(checkpoint['net_G']) | |
# Do inference. | |
net_G = net_G.module | |
net_G.eval() | |
for name, param in net_G.named_parameters(): | |
param.requires_grad = False | |
torch.cuda.empty_cache() | |
world_dir = os.path.join(args.output_dir) | |
os.makedirs(world_dir, exist_ok=True) | |
def get_bev(seed): | |
print('[PCGGenerator] Generating BEV scene representation...') | |
os.system('python terrain_generator.py --size {} --seed {} --outdir {}'.format(net_G.voxel.sample_size, seed, world_dir)) | |
heightmap_path = os.path.join(world_dir, 'heightmap.png') | |
semantic_path = os.path.join(world_dir, 'colormap.png') | |
heightmap = Image.open(heightmap_path) | |
semantic = Image.open(semantic_path) | |
return semantic, heightmap | |
def get_video(seed, num_frames): | |
device = torch.device('cuda') | |
rng_cuda = torch.Generator(device=device) | |
rng_cuda = rng_cuda.manual_seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
net_G.voxel.next_world(device, world_dir, checkpoint) | |
cam_mode = cfg.inference_args.camera_mode | |
current_outdir = os.path.join(world_dir, 'camera_{:02d}'.format(cam_mode)) | |
os.makedirs(current_outdir, exist_ok=True) | |
z = torch.empty(1, net_G.style_dims, dtype=torch.float32, device=device) | |
z.normal_(generator=rng_cuda) | |
net_G.inference_givenstyle(z, current_outdir, **vars(cfg.inference_args)) | |
return os.path.join(current_outdir, 'rgb_render.mp4') | |
markdown=f''' | |
# SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections | |
Authored by Zhaoxi Chen, Guangcong Wang, Ziwei Liu | |
### Useful links: | |
- [Official Github Repo](https://github.com/FrozenBurning/SceneDreamer) | |
- [Project Page](https://scene-dreamer.github.io/) | |
- [arXiv Link](https://arxiv.org/abs/2302.01330) | |
Licensed under the S-Lab License. | |
First use the button "Generate BEV" to randomly sample a 3D world represented by a height map and a semantic map. Then push the button "Render" to generate a camera trajectory flying through the world. | |
''' | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(markdown) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
semantic = gr.Image(type="pil", shape=(2048, 2048)) | |
with gr.Column(): | |
height = gr.Image(type="pil", shape=(2048, 2048)) | |
with gr.Row(): | |
# with gr.Column(): | |
# image = gr.Image(type='pil', shape(540, 960)) | |
with gr.Column(): | |
video=gr.Video() | |
with gr.Row(): | |
num_frames = gr.Slider(minimum=10, maximum=200, value=10, label='Number of rendered frames') | |
user_seed = gr.Slider(minimum=0, maximum=999999, value=8888, label='Random seed') | |
with gr.Row(): | |
btn = gr.Button(value="Generate BEV") | |
btn_2=gr.Button(value="Render") | |
btn.click(get_bev,[user_seed],[semantic, height]) | |
btn_2.click(get_video,[user_seed, num_frames],[video]) | |
demo.launch(debug=True) |