File size: 13,825 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
#               2022 Xingchen Song ([email protected])
#               2024 Alibaba Inc (Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Encoder definition."""
from typing import Tuple

import torch
from torch import nn
import torch.utils.checkpoint as ckpt
from torch.nn import functional as F

from cosyvoice.transformer.convolution import ConvolutionModule
from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
from cosyvoice.utils.class_utils import (
    COSYVOICE_EMB_CLASSES,
    COSYVOICE_SUBSAMPLE_CLASSES,
    COSYVOICE_ATTENTION_CLASSES,
    COSYVOICE_ACTIVATION_CLASSES,
)
from cosyvoice.utils.mask import make_pad_mask
from cosyvoice.utils.mask import add_optional_chunk_mask


class Upsample1D(nn.Module):
    """A 1D upsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
    """

    def __init__(self, channels: int, out_channels: int, stride: int=2):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels
        self.stride = stride
        # In this mode, first repeat interpolate, than conv with stride=1
        self.conv = nn.Conv1d(
            self.channels, self.out_channels, stride*2+1, stride=1,
            padding=0,
        )

    def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
        outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
        outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
        outputs = self.conv(outputs)
        return outputs, input_lengths * self.stride


class PreLookaheadLayer(nn.Module):
    def __init__(self, channels: int, pre_lookahead_len: int = 1):
        super().__init__()
        self.channels = channels
        self.pre_lookahead_len = pre_lookahead_len
        self.conv1 = nn.Conv1d(
            channels, channels,
            kernel_size=pre_lookahead_len+1,
            stride=1, padding=0,
        )
        self.conv2 = nn.Conv1d(
            channels, channels,
            kernel_size=3, stride=1, padding=0,
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        """
        inputs: (batch_size, seq_len, channels)
        """
        outputs = inputs.transpose(1, 2).contiguous()
        # look ahead
        outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
        outputs = F.leaky_relu(self.conv1(outputs))
        # outputs
        outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
        outputs = self.conv2(outputs)
        outputs = outputs.transpose(1, 2).contiguous()

        # residual connection
        outputs = outputs + inputs
        return outputs


class UpsampleConformerEncoder(torch.nn.Module):

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: str = "conv2d",
        pos_enc_layer_type: str = "rel_pos",
        normalize_before: bool = True,
        static_chunk_size: int = 0,
        use_dynamic_chunk: bool = False,
        global_cmvn: torch.nn.Module = None,
        use_dynamic_left_chunk: bool = False,
        positionwise_conv_kernel_size: int = 1,
        macaron_style: bool = True,
        selfattention_layer_type: str = "rel_selfattn",
        activation_type: str = "swish",
        use_cnn_module: bool = True,
        cnn_module_kernel: int = 15,
        causal: bool = False,
        cnn_module_norm: str = "batch_norm",
        key_bias: bool = True,
        gradient_checkpointing: bool = False,
    ):
        """
        Args:
            input_size (int): input dim
            output_size (int): dimension of attention
            attention_heads (int): the number of heads of multi head attention
            linear_units (int): the hidden units number of position-wise feed
                forward
            num_blocks (int): the number of decoder blocks
            dropout_rate (float): dropout rate
            attention_dropout_rate (float): dropout rate in attention
            positional_dropout_rate (float): dropout rate after adding
                positional encoding
            input_layer (str): input layer type.
                optional [linear, conv2d, conv2d6, conv2d8]
            pos_enc_layer_type (str): Encoder positional encoding layer type.
                opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
            normalize_before (bool):
                True: use layer_norm before each sub-block of a layer.
                False: use layer_norm after each sub-block of a layer.
            static_chunk_size (int): chunk size for static chunk training and
                decoding
            use_dynamic_chunk (bool): whether use dynamic chunk size for
                training or not, You can only use fixed chunk(chunk_size > 0)
                or dyanmic chunk size(use_dynamic_chunk = True)
            global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
            use_dynamic_left_chunk (bool): whether use dynamic left chunk in
                dynamic chunk training
            key_bias: whether use bias in attention.linear_k, False for whisper models.
            gradient_checkpointing: rerunning a forward-pass segment for each
                checkpointed segment during backward.
        """
        super().__init__()
        self._output_size = output_size

        self.global_cmvn = global_cmvn
        self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
            input_size,
            output_size,
            dropout_rate,
            COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
                                                      positional_dropout_rate),
        )

        self.normalize_before = normalize_before
        self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
        self.static_chunk_size = static_chunk_size
        self.use_dynamic_chunk = use_dynamic_chunk
        self.use_dynamic_left_chunk = use_dynamic_left_chunk
        self.gradient_checkpointing = gradient_checkpointing
        activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
        # self-attention module definition
        encoder_selfattn_layer_args = (
            attention_heads,
            output_size,
            attention_dropout_rate,
            key_bias,
        )
        # feed-forward module definition
        positionwise_layer_args = (
            output_size,
            linear_units,
            dropout_rate,
            activation,
        )
        # convolution module definition
        convolution_layer_args = (output_size, cnn_module_kernel, activation,
                                  cnn_module_norm, causal)
        self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
        self.encoders = torch.nn.ModuleList([
            ConformerEncoderLayer(
                output_size,
                COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
                    *encoder_selfattn_layer_args),
                PositionwiseFeedForward(*positionwise_layer_args),
                PositionwiseFeedForward(
                    *positionwise_layer_args) if macaron_style else None,
                ConvolutionModule(
                    *convolution_layer_args) if use_cnn_module else None,
                dropout_rate,
                normalize_before,
            ) for _ in range(num_blocks)
        ])
        self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
        self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
            input_size,
            output_size,
            dropout_rate,
            COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
                                                      positional_dropout_rate),
        )
        self.up_encoders = torch.nn.ModuleList([
            ConformerEncoderLayer(
                output_size,
                COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
                    *encoder_selfattn_layer_args),
                PositionwiseFeedForward(*positionwise_layer_args),
                PositionwiseFeedForward(
                    *positionwise_layer_args) if macaron_style else None,
                ConvolutionModule(
                    *convolution_layer_args) if use_cnn_module else None,
                dropout_rate,
                normalize_before,
            ) for _ in range(4)
        ])

    def output_size(self) -> int:
        return self._output_size

    def forward(
        self,
        xs: torch.Tensor,
        xs_lens: torch.Tensor,
        decoding_chunk_size: int = 0,
        num_decoding_left_chunks: int = -1,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Embed positions in tensor.

        Args:
            xs: padded input tensor (B, T, D)
            xs_lens: input length (B)
            decoding_chunk_size: decoding chunk size for dynamic chunk
                0: default for training, use random dynamic chunk.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
            num_decoding_left_chunks: number of left chunks, this is for decoding,
            the chunk size is decoding_chunk_size.
                >=0: use num_decoding_left_chunks
                <0: use all left chunks
        Returns:
            encoder output tensor xs, and subsampled masks
            xs: padded output tensor (B, T' ~= T/subsample_rate, D)
            masks: torch.Tensor batch padding mask after subsample
                (B, 1, T' ~= T/subsample_rate)
        NOTE(xcsong):
            We pass the `__call__` method of the modules instead of `forward` to the
            checkpointing API because `__call__` attaches all the hooks of the module.
            https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
        """
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        if self.global_cmvn is not None:
            xs = self.global_cmvn(xs)
        xs, pos_emb, masks = self.embed(xs, masks)
        mask_pad = masks  # (B, 1, T/subsample_rate)
        chunk_masks = add_optional_chunk_mask(xs, masks,
                                              self.use_dynamic_chunk,
                                              self.use_dynamic_left_chunk,
                                              decoding_chunk_size,
                                              self.static_chunk_size,
                                              num_decoding_left_chunks)
        # lookahead + conformer encoder
        xs = self.pre_lookahead_layer(xs)
        xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)

        # upsample + conformer encoder
        xs = xs.transpose(1, 2).contiguous()
        xs, xs_lens = self.up_layer(xs, xs_lens)
        xs = xs.transpose(1, 2).contiguous()
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        xs, pos_emb, masks = self.up_embed(xs, masks)
        mask_pad = masks  # (B, 1, T/subsample_rate)
        chunk_masks = add_optional_chunk_mask(xs, masks,
                                              self.use_dynamic_chunk,
                                              self.use_dynamic_left_chunk,
                                              decoding_chunk_size,
                                              self.static_chunk_size * self.up_layer.stride,
                                              num_decoding_left_chunks)
        xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)

        if self.normalize_before:
            xs = self.after_norm(xs)
        # Here we assume the mask is not changed in encoder layers, so just
        # return the masks before encoder layers, and the masks will be used
        # for cross attention with decoder later
        return xs, masks

    def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
                       pos_emb: torch.Tensor,
                       mask_pad: torch.Tensor) -> torch.Tensor:
        for layer in self.encoders:
            xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
        return xs

    def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
                       pos_emb: torch.Tensor,
                       mask_pad: torch.Tensor) -> torch.Tensor:
        for layer in self.up_encoders:
            xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
        return xs