File size: 9,883 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from tqdm import tqdm
from hyperpyyaml import load_hyperpyyaml
from modelscope import snapshot_download
import torch
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
from cosyvoice.utils.file_utils import logging


class CosyVoice:

    def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
        instruct = True if '-Instruct' in model_dir else False
        self.model_dir = model_dir
        if not os.path.exists(model_dir):
            model_dir = snapshot_download(model_dir)
        with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
            configs = load_hyperpyyaml(f)
        self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
                                          configs['feat_extractor'],
                                          '{}/campplus.onnx'.format(model_dir),
                                          '{}/speech_tokenizer_v1.onnx'.format(model_dir),
                                          '{}/spk2info.pt'.format(model_dir),
                                          instruct,
                                          configs['allowed_special'])
        self.sample_rate = configs['sample_rate']
        if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
            load_jit = False
            fp16 = False
            logging.warning('cpu do not support fp16 and jit, force set to False')
        self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
        self.model.load('{}/llm.pt'.format(model_dir),
                        '{}/flow.pt'.format(model_dir),
                        '{}/hift.pt'.format(model_dir))
        if load_jit:
            self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
                                '{}/llm.llm.fp16.zip'.format(model_dir),
                                '{}/flow.encoder.fp32.zip'.format(model_dir))
        if load_onnx:
            self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
        del configs

    def list_avaliable_spks(self):
        spks = list(self.frontend.spk2info.keys())
        return spks

    def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
        for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
            model_input = self.frontend.frontend_sft(i, spk_id)
            start_time = time.time()
            logging.info('synthesis text {}'.format(i))
            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
                logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                yield model_output
                start_time = time.time()

    def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
        prompt_text = self.frontend.text_normalize(prompt_text, split=False)
        for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
            if len(i) < 0.5 * len(prompt_text):
                logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
            model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
            start_time = time.time()
            logging.info('synthesis text {}'.format(i))
            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
                logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std()))
                yield model_output
                start_time = time.time()

    def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
        if self.frontend.instruct is True:
            raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
        for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
            model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
            start_time = time.time()
            logging.info('synthesis text {}'.format(i))
            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
                logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                yield model_output
                start_time = time.time()

    def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
        if self.frontend.instruct is False:
            raise ValueError('{} do not support instruct inference'.format(self.model_dir))
        instruct_text = self.frontend.text_normalize(instruct_text, split=False)
        for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
            model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
            start_time = time.time()
            logging.info('synthesis text {}'.format(i))
            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
                logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                yield model_output
                start_time = time.time()

    def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0):
        for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
            model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
            start_time = time.time()
            logging.info('synthesis text {}'.format(i))
            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
                logging.info('yield speech len {}, rtf {}, abs mean {}, std {}'.format(speech_len, (time.time() - start_time) / speech_len, model_output['tts_speech'].abs().mean(), model_output['tts_speech'].std()))
                yield model_output
                start_time = time.time()

    def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
        model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
        start_time = time.time()
        for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
            speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
            logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
            yield model_output
            start_time = time.time()

class CosyVoice2(CosyVoice):

    def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
        instruct = True if '-Instruct' in model_dir else False
        self.model_dir = model_dir
        if not os.path.exists(model_dir):
            model_dir = snapshot_download(model_dir)
        with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
            configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
        self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
                                          configs['feat_extractor'],
                                          '{}/campplus.onnx'.format(model_dir),
                                          '{}/speech_tokenizer_v2.onnx'.format(model_dir),
                                          '{}/spk2info.pt'.format(model_dir),
                                          instruct,
                                          configs['allowed_special'])
        self.sample_rate = configs['sample_rate']
        if torch.cuda.is_available() is False and load_jit is True:
            load_jit = False
            logging.warning('cpu do not support jit, force set to False')
        self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
        self.model.load('{}/llm.pt'.format(model_dir),
                        '{}/flow.pt'.format(model_dir),
                        '{}/hift.pt'.format(model_dir))
        if load_jit:
            self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir))
        if load_trt is True and load_onnx is True:
            load_onnx = False
            logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False')
        if load_onnx:
            self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
        if load_trt:
            self.model.load_trt('{}/flow.decoder.estimator.fp16.A10.plan'.format(model_dir))
        del configs