File size: 1,818 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# @package _global_

# example hyperparameter optimization of some experiment with Optuna:
# python train.py -m hparams_search=mnist_optuna experiment=example

defaults:
  - override /hydra/sweeper: optuna

# choose metric which will be optimized by Optuna
# make sure this is the correct name of some metric logged in lightning module!
optimized_metric: "val/acc_best"

# here we define Optuna hyperparameter search
# it optimizes for value returned from function with @hydra.main decorator
# docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
hydra:
  mode: "MULTIRUN" # set hydra to multirun by default if this config is attached

  sweeper:
    _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper

    # storage URL to persist optimization results
    # for example, you can use SQLite if you set 'sqlite:///example.db'
    storage: null

    # name of the study to persist optimization results
    study_name: null

    # number of parallel workers
    n_jobs: 1

    # 'minimize' or 'maximize' the objective
    direction: maximize

    # total number of runs that will be executed
    n_trials: 20

    # choose Optuna hyperparameter sampler
    # you can choose bayesian sampler (tpe), random search (without optimization), grid sampler, and others
    # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
    sampler:
      _target_: optuna.samplers.TPESampler
      seed: 1234
      n_startup_trials: 10 # number of random sampling runs before optimization starts

    # define hyperparameter search space
    params:
      model.optimizer.lr: interval(0.0001, 0.1)
      data.batch_size: choice(32, 64, 128, 256)
      model.net.lin1_size: choice(64, 128, 256)
      model.net.lin2_size: choice(64, 128, 256)
      model.net.lin3_size: choice(32, 64, 128, 256)