File size: 7,003 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
This is a base lightning module that can be used to train a model.
The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
"""
import inspect
from abc import ABC
from typing import Any, Dict

import torch
from lightning import LightningModule
from lightning.pytorch.utilities import grad_norm

from matcha import utils
from matcha.utils.utils import plot_tensor

log = utils.get_pylogger(__name__)


class BaseLightningClass(LightningModule, ABC):
    def update_data_statistics(self, data_statistics):
        if data_statistics is None:
            data_statistics = {
                "mel_mean": 0.0,
                "mel_std": 1.0,
            }

        self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
        self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))

    def configure_optimizers(self) -> Any:
        optimizer = self.hparams.optimizer(params=self.parameters())
        if self.hparams.scheduler not in (None, {}):
            scheduler_args = {}
            # Manage last epoch for exponential schedulers
            if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
                if hasattr(self, "ckpt_loaded_epoch"):
                    current_epoch = self.ckpt_loaded_epoch - 1
                else:
                    current_epoch = -1

            scheduler_args.update({"optimizer": optimizer})
            scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
            scheduler.last_epoch = current_epoch
            return {
                "optimizer": optimizer,
                "lr_scheduler": {
                    "scheduler": scheduler,
                    "interval": self.hparams.scheduler.lightning_args.interval,
                    "frequency": self.hparams.scheduler.lightning_args.frequency,
                    "name": "learning_rate",
                },
            }

        return {"optimizer": optimizer}

    def get_losses(self, batch):
        x, x_lengths = batch["x"], batch["x_lengths"]
        y, y_lengths = batch["y"], batch["y_lengths"]
        spks = batch["spks"]

        dur_loss, prior_loss, diff_loss = self(
            x=x,
            x_lengths=x_lengths,
            y=y,
            y_lengths=y_lengths,
            spks=spks,
            out_size=self.out_size,
        )
        return {
            "dur_loss": dur_loss,
            "prior_loss": prior_loss,
            "diff_loss": diff_loss,
        }

    def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
        self.ckpt_loaded_epoch = checkpoint["epoch"]  # pylint: disable=attribute-defined-outside-init

    def training_step(self, batch: Any, batch_idx: int):
        loss_dict = self.get_losses(batch)
        self.log(
            "step",
            float(self.global_step),
            on_step=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )

        self.log(
            "sub_loss/train_dur_loss",
            loss_dict["dur_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )
        self.log(
            "sub_loss/train_prior_loss",
            loss_dict["prior_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )
        self.log(
            "sub_loss/train_diff_loss",
            loss_dict["diff_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )

        total_loss = sum(loss_dict.values())
        self.log(
            "loss/train",
            total_loss,
            on_step=True,
            on_epoch=True,
            logger=True,
            prog_bar=True,
            sync_dist=True,
        )

        return {"loss": total_loss, "log": loss_dict}

    def validation_step(self, batch: Any, batch_idx: int):
        loss_dict = self.get_losses(batch)
        self.log(
            "sub_loss/val_dur_loss",
            loss_dict["dur_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )
        self.log(
            "sub_loss/val_prior_loss",
            loss_dict["prior_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )
        self.log(
            "sub_loss/val_diff_loss",
            loss_dict["diff_loss"],
            on_step=True,
            on_epoch=True,
            logger=True,
            sync_dist=True,
        )

        total_loss = sum(loss_dict.values())
        self.log(
            "loss/val",
            total_loss,
            on_step=True,
            on_epoch=True,
            logger=True,
            prog_bar=True,
            sync_dist=True,
        )

        return total_loss

    def on_validation_end(self) -> None:
        if self.trainer.is_global_zero:
            one_batch = next(iter(self.trainer.val_dataloaders))
            if self.current_epoch == 0:
                log.debug("Plotting original samples")
                for i in range(2):
                    y = one_batch["y"][i].unsqueeze(0).to(self.device)
                    self.logger.experiment.add_image(
                        f"original/{i}",
                        plot_tensor(y.squeeze().cpu()),
                        self.current_epoch,
                        dataformats="HWC",
                    )

            log.debug("Synthesising...")
            for i in range(2):
                x = one_batch["x"][i].unsqueeze(0).to(self.device)
                x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
                spks = one_batch["spks"][i].unsqueeze(0).to(self.device) if one_batch["spks"] is not None else None
                output = self.synthesise(x[:, :x_lengths], x_lengths, n_timesteps=10, spks=spks)
                y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
                attn = output["attn"]
                self.logger.experiment.add_image(
                    f"generated_enc/{i}",
                    plot_tensor(y_enc.squeeze().cpu()),
                    self.current_epoch,
                    dataformats="HWC",
                )
                self.logger.experiment.add_image(
                    f"generated_dec/{i}",
                    plot_tensor(y_dec.squeeze().cpu()),
                    self.current_epoch,
                    dataformats="HWC",
                )
                self.logger.experiment.add_image(
                    f"alignment/{i}",
                    plot_tensor(attn.squeeze().cpu()),
                    self.current_epoch,
                    dataformats="HWC",
                )

    def on_before_optimizer_step(self, optimizer):
        self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})