File size: 14,845 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
""" from https://github.com/jaywalnut310/glow-tts """

import math

import torch
import torch.nn as nn
from einops import rearrange

import matcha.utils as utils
from matcha.utils.model import sequence_mask

log = utils.get_pylogger(__name__)


class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-4):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = torch.nn.Parameter(torch.ones(channels))
        self.beta = torch.nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        n_dims = len(x.shape)
        mean = torch.mean(x, 1, keepdim=True)
        variance = torch.mean((x - mean) ** 2, 1, keepdim=True)

        x = (x - mean) * torch.rsqrt(variance + self.eps)

        shape = [1, -1] + [1] * (n_dims - 2)
        x = x * self.gamma.view(*shape) + self.beta.view(*shape)
        return x


class ConvReluNorm(nn.Module):
    def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
        super().__init__()
        self.in_channels = in_channels
        self.hidden_channels = hidden_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.p_dropout = p_dropout

        self.conv_layers = torch.nn.ModuleList()
        self.norm_layers = torch.nn.ModuleList()
        self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
        self.norm_layers.append(LayerNorm(hidden_channels))
        self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
        for _ in range(n_layers - 1):
            self.conv_layers.append(
                torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
            )
            self.norm_layers.append(LayerNorm(hidden_channels))
        self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
        self.proj.weight.data.zero_()
        self.proj.bias.data.zero_()

    def forward(self, x, x_mask):
        x_org = x
        for i in range(self.n_layers):
            x = self.conv_layers[i](x * x_mask)
            x = self.norm_layers[i](x)
            x = self.relu_drop(x)
        x = x_org + self.proj(x)
        return x * x_mask


class DurationPredictor(nn.Module):
    def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
        super().__init__()
        self.in_channels = in_channels
        self.filter_channels = filter_channels
        self.p_dropout = p_dropout

        self.drop = torch.nn.Dropout(p_dropout)
        self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.norm_1 = LayerNorm(filter_channels)
        self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.norm_2 = LayerNorm(filter_channels)
        self.proj = torch.nn.Conv1d(filter_channels, 1, 1)

    def forward(self, x, x_mask):
        x = self.conv_1(x * x_mask)
        x = torch.relu(x)
        x = self.norm_1(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        x = torch.relu(x)
        x = self.norm_2(x)
        x = self.drop(x)
        x = self.proj(x * x_mask)
        return x * x_mask


class RotaryPositionalEmbeddings(nn.Module):
    """
    ## RoPE module

    Rotary encoding transforms pairs of features by rotating in the 2D plane.
    That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
    Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
    by an angle depending on the position of the token.
    """

    def __init__(self, d: int, base: int = 10_000):
        r"""
        * `d` is the number of features $d$
        * `base` is the constant used for calculating $\Theta$
        """
        super().__init__()

        self.base = base
        self.d = int(d)
        self.cos_cached = None
        self.sin_cached = None

    def _build_cache(self, x: torch.Tensor):
        r"""
        Cache $\cos$ and $\sin$ values
        """
        # Return if cache is already built
        if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
            return

        # Get sequence length
        seq_len = x.shape[0]

        # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
        theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)

        # Create position indexes `[0, 1, ..., seq_len - 1]`
        seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)

        # Calculate the product of position index and $\theta_i$
        idx_theta = torch.einsum("n,d->nd", seq_idx, theta)

        # Concatenate so that for row $m$ we have
        # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
        idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)

        # Cache them
        self.cos_cached = idx_theta2.cos()[:, None, None, :]
        self.sin_cached = idx_theta2.sin()[:, None, None, :]

    def _neg_half(self, x: torch.Tensor):
        # $\frac{d}{2}$
        d_2 = self.d // 2

        # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
        return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)

    def forward(self, x: torch.Tensor):
        """
        * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
        """
        # Cache $\cos$ and $\sin$ values
        x = rearrange(x, "b h t d -> t b h d")

        self._build_cache(x)

        # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
        x_rope, x_pass = x[..., : self.d], x[..., self.d :]

        # Calculate
        # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
        neg_half_x = self._neg_half(x_rope)

        x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])

        return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        channels,
        out_channels,
        n_heads,
        heads_share=True,
        p_dropout=0.0,
        proximal_bias=False,
        proximal_init=False,
    ):
        super().__init__()
        assert channels % n_heads == 0

        self.channels = channels
        self.out_channels = out_channels
        self.n_heads = n_heads
        self.heads_share = heads_share
        self.proximal_bias = proximal_bias
        self.p_dropout = p_dropout
        self.attn = None

        self.k_channels = channels // n_heads
        self.conv_q = torch.nn.Conv1d(channels, channels, 1)
        self.conv_k = torch.nn.Conv1d(channels, channels, 1)
        self.conv_v = torch.nn.Conv1d(channels, channels, 1)

        # from https://nn.labml.ai/transformers/rope/index.html
        self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
        self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)

        self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
        self.drop = torch.nn.Dropout(p_dropout)

        torch.nn.init.xavier_uniform_(self.conv_q.weight)
        torch.nn.init.xavier_uniform_(self.conv_k.weight)
        if proximal_init:
            self.conv_k.weight.data.copy_(self.conv_q.weight.data)
            self.conv_k.bias.data.copy_(self.conv_q.bias.data)
        torch.nn.init.xavier_uniform_(self.conv_v.weight)

    def forward(self, x, c, attn_mask=None):
        q = self.conv_q(x)
        k = self.conv_k(c)
        v = self.conv_v(c)

        x, self.attn = self.attention(q, k, v, mask=attn_mask)

        x = self.conv_o(x)
        return x

    def attention(self, query, key, value, mask=None):
        b, d, t_s, t_t = (*key.size(), query.size(2))
        query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
        key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
        value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)

        query = self.query_rotary_pe(query)
        key = self.key_rotary_pe(key)

        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)

        if self.proximal_bias:
            assert t_s == t_t, "Proximal bias is only available for self-attention."
            scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e4)
        p_attn = torch.nn.functional.softmax(scores, dim=-1)
        p_attn = self.drop(p_attn)
        output = torch.matmul(p_attn, value)
        output = output.transpose(2, 3).contiguous().view(b, d, t_t)
        return output, p_attn

    @staticmethod
    def _attention_bias_proximal(length):
        r = torch.arange(length, dtype=torch.float32)
        diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
        return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)


class FFN(nn.Module):
    def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.filter_channels = filter_channels
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout

        self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
        self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.drop = torch.nn.Dropout(p_dropout)

    def forward(self, x, x_mask):
        x = self.conv_1(x * x_mask)
        x = torch.relu(x)
        x = self.drop(x)
        x = self.conv_2(x * x_mask)
        return x * x_mask


class Encoder(nn.Module):
    def __init__(
        self,
        hidden_channels,
        filter_channels,
        n_heads,
        n_layers,
        kernel_size=1,
        p_dropout=0.0,
        **kwargs,
    ):
        super().__init__()
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout

        self.drop = torch.nn.Dropout(p_dropout)
        self.attn_layers = torch.nn.ModuleList()
        self.norm_layers_1 = torch.nn.ModuleList()
        self.ffn_layers = torch.nn.ModuleList()
        self.norm_layers_2 = torch.nn.ModuleList()
        for _ in range(self.n_layers):
            self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
            self.norm_layers_1.append(LayerNorm(hidden_channels))
            self.ffn_layers.append(
                FFN(
                    hidden_channels,
                    hidden_channels,
                    filter_channels,
                    kernel_size,
                    p_dropout=p_dropout,
                )
            )
            self.norm_layers_2.append(LayerNorm(hidden_channels))

    def forward(self, x, x_mask):
        attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
        for i in range(self.n_layers):
            x = x * x_mask
            y = self.attn_layers[i](x, x, attn_mask)
            y = self.drop(y)
            x = self.norm_layers_1[i](x + y)
            y = self.ffn_layers[i](x, x_mask)
            y = self.drop(y)
            x = self.norm_layers_2[i](x + y)
        x = x * x_mask
        return x


class TextEncoder(nn.Module):
    def __init__(
        self,
        encoder_type,
        encoder_params,
        duration_predictor_params,
        n_vocab,
        n_spks=1,
        spk_emb_dim=128,
    ):
        super().__init__()
        self.encoder_type = encoder_type
        self.n_vocab = n_vocab
        self.n_feats = encoder_params.n_feats
        self.n_channels = encoder_params.n_channels
        self.spk_emb_dim = spk_emb_dim
        self.n_spks = n_spks

        self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
        torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)

        if encoder_params.prenet:
            self.prenet = ConvReluNorm(
                self.n_channels,
                self.n_channels,
                self.n_channels,
                kernel_size=5,
                n_layers=3,
                p_dropout=0.5,
            )
        else:
            self.prenet = lambda x, x_mask: x

        self.encoder = Encoder(
            encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
            encoder_params.filter_channels,
            encoder_params.n_heads,
            encoder_params.n_layers,
            encoder_params.kernel_size,
            encoder_params.p_dropout,
        )

        self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
        self.proj_w = DurationPredictor(
            self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
            duration_predictor_params.filter_channels_dp,
            duration_predictor_params.kernel_size,
            duration_predictor_params.p_dropout,
        )

    def forward(self, x, x_lengths, spks=None):
        """Run forward pass to the transformer based encoder and duration predictor

        Args:
            x (torch.Tensor): text input
                shape: (batch_size, max_text_length)
            x_lengths (torch.Tensor): text input lengths
                shape: (batch_size,)
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size,)

        Returns:
            mu (torch.Tensor): average output of the encoder
                shape: (batch_size, n_feats, max_text_length)
            logw (torch.Tensor): log duration predicted by the duration predictor
                shape: (batch_size, 1, max_text_length)
            x_mask (torch.Tensor): mask for the text input
                shape: (batch_size, 1, max_text_length)
        """
        x = self.emb(x) * math.sqrt(self.n_channels)
        x = torch.transpose(x, 1, -1)
        x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)

        x = self.prenet(x, x_mask)
        if self.n_spks > 1:
            x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
        x = self.encoder(x, x_mask)
        mu = self.proj_m(x) * x_mask

        x_dp = torch.detach(x)
        logw = self.proj_w(x_dp, x_mask)

        return mu, logw, x_mask