Spaces:
Running
on
L4
Running
on
L4
File size: 10,059 Bytes
5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import datetime as dt
import math
import random
import torch
import matcha.utils.monotonic_align as monotonic_align
from matcha import utils
from matcha.models.baselightningmodule import BaseLightningClass
from matcha.models.components.flow_matching import CFM
from matcha.models.components.text_encoder import TextEncoder
from matcha.utils.model import (
denormalize,
duration_loss,
fix_len_compatibility,
generate_path,
sequence_mask,
)
log = utils.get_pylogger(__name__)
class MatchaTTS(BaseLightningClass): # 🍵
def __init__(
self,
n_vocab,
n_spks,
spk_emb_dim,
n_feats,
encoder,
decoder,
cfm,
data_statistics,
out_size,
optimizer=None,
scheduler=None,
prior_loss=True,
):
super().__init__()
self.save_hyperparameters(logger=False)
self.n_vocab = n_vocab
self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.n_feats = n_feats
self.out_size = out_size
self.prior_loss = prior_loss
if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
self.encoder = TextEncoder(
encoder.encoder_type,
encoder.encoder_params,
encoder.duration_predictor_params,
n_vocab,
n_spks,
spk_emb_dim,
)
self.decoder = CFM(
in_channels=2 * encoder.encoder_params.n_feats,
out_channel=encoder.encoder_params.n_feats,
cfm_params=cfm,
decoder_params=decoder,
n_spks=n_spks,
spk_emb_dim=spk_emb_dim,
)
self.update_data_statistics(data_statistics)
@torch.inference_mode()
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
shape: (batch_size, max_text_length)
x_lengths (torch.Tensor): lengths of texts in batch.
shape: (batch_size,)
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
spks (bool, optional): speaker ids.
shape: (batch_size,)
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
Returns:
dict: {
"encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
# Average mel spectrogram generated by the encoder
"decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
# Refined mel spectrogram improved by the CFM
"attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length),
# Alignment map between text and mel spectrogram
"mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
# Denormalized mel spectrogram
"mel_lengths": torch.Tensor, shape: (batch_size,),
# Lengths of mel spectrograms
"rtf": float,
# Real-time factor
"""
# For RTF computation
t = dt.datetime.now()
if self.n_spks > 1:
# Get speaker embedding
spks = self.spk_emb(spks.long())
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = y_lengths.max()
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Generate sample tracing the probability flow
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
t = (dt.datetime.now() - t).total_seconds()
rtf = t * 22050 / (decoder_outputs.shape[-1] * 256)
return {
"encoder_outputs": encoder_outputs,
"decoder_outputs": decoder_outputs,
"attn": attn[:, :, :y_max_length],
"mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std),
"mel_lengths": y_lengths,
"rtf": rtf,
}
def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. flow matching loss: loss between mel-spectrogram and decoder outputs.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
shape: (batch_size, max_text_length)
x_lengths (torch.Tensor): lengths of texts in batch.
shape: (batch_size,)
y (torch.Tensor): batch of corresponding mel-spectrograms.
shape: (batch_size, n_feats, max_mel_length)
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
shape: (batch_size,)
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
spks (torch.Tensor, optional): speaker ids.
shape: (batch_size,)
"""
if self.n_spks > 1:
# Get speaker embedding
spks = self.spk_emb(spks)
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y**2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
# refered to as prior loss in the paper
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# Cut a small segment of mel-spectrogram in order to increase batch size
# - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
# - Do not need this hack for Matcha-TTS, but it works with it as well
if not isinstance(out_size, type(None)):
max_offset = (y_lengths - out_size).clamp(0)
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
out_offset = torch.LongTensor(
[torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges]
).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut
y = y_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
# Compute loss of the decoder
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
if self.prior_loss:
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
else:
prior_loss = 0
return dur_loss, prior_loss, diff_loss
|