File size: 10,653 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnxruntime
import torch
import torch.nn.functional as F
from matcha.models.components.flow_matching import BASECFM


class ConditionalCFM(BASECFM):
    def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
        super().__init__(
            n_feats=in_channels,
            cfm_params=cfm_params,
            n_spks=n_spks,
            spk_emb_dim=spk_emb_dim,
        )
        self.t_scheduler = cfm_params.t_scheduler
        self.training_cfg_rate = cfm_params.training_cfg_rate
        self.inference_cfg_rate = cfm_params.inference_cfg_rate
        in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
        # Just change the architecture of the estimator here
        self.estimator = estimator

    @torch.inference_mode()
    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
        """Forward diffusion

        Args:
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            n_timesteps (int): number of diffusion steps
            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes

        Returns:
            sample: generated mel-spectrogram
                shape: (batch_size, n_feats, mel_timesteps)
        """

        z = torch.randn_like(mu) * temperature
        cache_size = flow_cache.shape[2]
        # fix prompt and overlap part mu and z
        if cache_size != 0:
            z[:, :, :cache_size] = flow_cache[:, :, :, 0]
            mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
        z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
        mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
        flow_cache = torch.stack([z_cache, mu_cache], dim=-1)

        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
        if self.t_scheduler == 'cosine':
            t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache

    def solve_euler(self, x, t_span, mu, mask, spks, cond):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes
        """
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
        t = t.unsqueeze(dim=0)

        # I am storing this because I can later plot it by putting a debugger here and saving it to a file
        # Or in future might add like a return_all_steps flag
        sol = []

        if self.inference_cfg_rate > 0:
            # Do not use concat, it may cause memory format changed and trt infer with wrong results!
            x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
            mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
            mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
            t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
            spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
            cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
        else:
            x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
        for step in range(1, len(t_span)):
            # Classifier-Free Guidance inference introduced in VoiceBox
            if self.inference_cfg_rate > 0:
                x_in[:] = x
                mask_in[:] = mask
                mu_in[0] = mu
                t_in[:] = t.unsqueeze(0)
                spks_in[0] = spks
                cond_in[0] = cond
            else:
                x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
            dphi_dt = self.forward_estimator(
                x_in, mask_in,
                mu_in, t_in,
                spks_in,
                cond_in
            )
            if self.inference_cfg_rate > 0:
                dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
                dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
            x = x + dt * dphi_dt
            t = t + dt
            sol.append(x)
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t

        return sol[-1].float()

    def forward_estimator(self, x, mask, mu, t, spks, cond):
        if isinstance(self.estimator, torch.nn.Module):
            return self.estimator.forward(x, mask, mu, t, spks, cond)
        elif isinstance(self.estimator, onnxruntime.InferenceSession):
            ort_inputs = {
                'x': x.cpu().numpy(),
                'mask': mask.cpu().numpy(),
                'mu': mu.cpu().numpy(),
                't': t.cpu().numpy(),
                'spks': spks.cpu().numpy(),
                'cond': cond.cpu().numpy()
            }
            output = self.estimator.run(None, ort_inputs)[0]
            return torch.tensor(output, dtype=x.dtype, device=x.device)
        else:
            self.estimator.set_input_shape('x', (2, 80, x.size(2)))
            self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
            self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
            self.estimator.set_input_shape('t', (2,))
            self.estimator.set_input_shape('spks', (2, 80))
            self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
            # run trt engine
            self.estimator.execute_v2([x.contiguous().data_ptr(),
                                        mask.contiguous().data_ptr(),
                                        mu.contiguous().data_ptr(),
                                        t.contiguous().data_ptr(),
                                        spks.contiguous().data_ptr(),
                                        cond.contiguous().data_ptr(),
                                        x.data_ptr()])
            return x

    def compute_loss(self, x1, mask, mu, spks=None, cond=None):
        """Computes diffusion loss

        Args:
            x1 (torch.Tensor): Target
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): target mask
                shape: (batch_size, 1, mel_timesteps)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            spks (torch.Tensor, optional): speaker embedding. Defaults to None.
                shape: (batch_size, spk_emb_dim)

        Returns:
            loss: conditional flow matching loss
            y: conditional flow
                shape: (batch_size, n_feats, mel_timesteps)
        """
        b, _, t = mu.shape

        # random timestep
        t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
        if self.t_scheduler == 'cosine':
            t = 1 - torch.cos(t * 0.5 * torch.pi)
        # sample noise p(x_0)
        z = torch.randn_like(x1)

        y = (1 - (1 - self.sigma_min) * t) * z + t * x1
        u = x1 - (1 - self.sigma_min) * z

        # during training, we randomly drop condition to trade off mode coverage and sample fidelity
        if self.training_cfg_rate > 0:
            cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
            mu = mu * cfg_mask.view(-1, 1, 1)
            spks = spks * cfg_mask.view(-1, 1)
            cond = cond * cfg_mask.view(-1, 1, 1)

        pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
        loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
        return loss, y


class CausalConditionalCFM(ConditionalCFM):
    def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
        super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
        self.rand_noise = torch.randn([1, 80, 50 * 300])

    @torch.inference_mode()
    def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
        """Forward diffusion

        Args:
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            n_timesteps (int): number of diffusion steps
            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes

        Returns:
            sample: generated mel-spectrogram
                shape: (batch_size, n_feats, mel_timesteps)
        """

        z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
        if self.fp16 is True:
            z = z.half()
        # fix prompt and overlap part mu and z
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
        if self.t_scheduler == 'cosine':
            t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None