File size: 7,409 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import base64
import os
from functools import lru_cache
from typing import Optional
import torch
from transformers import AutoTokenizer
from whisper.tokenizer import Tokenizer

import tiktoken

LANGUAGES = {
    "en": "english",
    "zh": "chinese",
    "de": "german",
    "es": "spanish",
    "ru": "russian",
    "ko": "korean",
    "fr": "french",
    "ja": "japanese",
    "pt": "portuguese",
    "tr": "turkish",
    "pl": "polish",
    "ca": "catalan",
    "nl": "dutch",
    "ar": "arabic",
    "sv": "swedish",
    "it": "italian",
    "id": "indonesian",
    "hi": "hindi",
    "fi": "finnish",
    "vi": "vietnamese",
    "he": "hebrew",
    "uk": "ukrainian",
    "el": "greek",
    "ms": "malay",
    "cs": "czech",
    "ro": "romanian",
    "da": "danish",
    "hu": "hungarian",
    "ta": "tamil",
    "no": "norwegian",
    "th": "thai",
    "ur": "urdu",
    "hr": "croatian",
    "bg": "bulgarian",
    "lt": "lithuanian",
    "la": "latin",
    "mi": "maori",
    "ml": "malayalam",
    "cy": "welsh",
    "sk": "slovak",
    "te": "telugu",
    "fa": "persian",
    "lv": "latvian",
    "bn": "bengali",
    "sr": "serbian",
    "az": "azerbaijani",
    "sl": "slovenian",
    "kn": "kannada",
    "et": "estonian",
    "mk": "macedonian",
    "br": "breton",
    "eu": "basque",
    "is": "icelandic",
    "hy": "armenian",
    "ne": "nepali",
    "mn": "mongolian",
    "bs": "bosnian",
    "kk": "kazakh",
    "sq": "albanian",
    "sw": "swahili",
    "gl": "galician",
    "mr": "marathi",
    "pa": "punjabi",
    "si": "sinhala",
    "km": "khmer",
    "sn": "shona",
    "yo": "yoruba",
    "so": "somali",
    "af": "afrikaans",
    "oc": "occitan",
    "ka": "georgian",
    "be": "belarusian",
    "tg": "tajik",
    "sd": "sindhi",
    "gu": "gujarati",
    "am": "amharic",
    "yi": "yiddish",
    "lo": "lao",
    "uz": "uzbek",
    "fo": "faroese",
    "ht": "haitian creole",
    "ps": "pashto",
    "tk": "turkmen",
    "nn": "nynorsk",
    "mt": "maltese",
    "sa": "sanskrit",
    "lb": "luxembourgish",
    "my": "myanmar",
    "bo": "tibetan",
    "tl": "tagalog",
    "mg": "malagasy",
    "as": "assamese",
    "tt": "tatar",
    "haw": "hawaiian",
    "ln": "lingala",
    "ha": "hausa",
    "ba": "bashkir",
    "jw": "javanese",
    "su": "sundanese",
    "yue": "cantonese",
    "minnan": "minnan",
    "wuyu": "wuyu",
    "dialect": "dialect",
    "zh/en": "zh/en",
    "en/zh": "en/zh",
}

# language code lookup by name, with a few language aliases
TO_LANGUAGE_CODE = {
    **{language: code for code, language in LANGUAGES.items()},
    "burmese": "my",
    "valencian": "ca",
    "flemish": "nl",
    "haitian": "ht",
    "letzeburgesch": "lb",
    "pushto": "ps",
    "panjabi": "pa",
    "moldavian": "ro",
    "moldovan": "ro",
    "sinhalese": "si",
    "castilian": "es",
    "mandarin": "zh",
}

AUDIO_EVENT = {
    "ASR": "ASR",
    "AED": "AED",
    "SER": "SER",
    "Speech": "Speech",
    "/Speech": "/Speech",
    "BGM": "BGM",
    "/BGM": "/BGM",
    "Laughter": "Laughter",
    "/Laughter": "/Laughter",
    "Applause": "Applause",
    "/Applause": "/Applause",
}

EMOTION = {
    "HAPPY": "HAPPY",
    "SAD": "SAD",
    "ANGRY": "ANGRY",
    "NEUTRAL": "NEUTRAL",
}

TTS_Vocal_Token = {
    "TTS/B": "TTS/B",
    "TTS/O": "TTS/O",
    "TTS/Q": "TTS/Q",
    "TTS/A": "TTS/A",
    "TTS/CO": "TTS/CO",
    "TTS/CL": "TTS/CL",
    "TTS/H": "TTS/H",
    **{f"TTS/SP{i:02d}": f"TTS/SP{i:02d}" for i in range(1, 14)}
}


@lru_cache(maxsize=None)
def get_encoding(name: str = "gpt2", num_languages: int = 99):
    vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
    ranks = {
        base64.b64decode(token): int(rank)
        for token, rank in (line.split() for line in open(vocab_path) if line)
    }
    n_vocab = len(ranks)
    special_tokens = {}

    specials = [
        "<|endoftext|>",
        "<|startoftranscript|>",
        *[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
        *[f"<|{audio_event}|>" for audio_event in list(AUDIO_EVENT.keys())],
        *[f"<|{emotion}|>" for emotion in list(EMOTION.keys())],
        "<|translate|>",
        "<|transcribe|>",
        "<|startoflm|>",
        "<|startofprev|>",
        "<|nospeech|>",
        "<|notimestamps|>",
        *[f"<|SPECIAL_TOKEN_{i}|>" for i in range(1, 31)],        # register special tokens for ASR
        *[f"<|{tts}|>" for tts in list(TTS_Vocal_Token.keys())],  # register special tokens for TTS
        *[f"<|{i * 0.02:.2f}|>" for i in range(1501)],
    ]

    for token in specials:
        special_tokens[token] = n_vocab
        n_vocab += 1

    return tiktoken.Encoding(
        name=os.path.basename(vocab_path),
        explicit_n_vocab=n_vocab,
        pat_str=r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""",
        mergeable_ranks=ranks,
        special_tokens=special_tokens,
    )


@lru_cache(maxsize=None)
def get_tokenizer(
    multilingual: bool,
    *,
    num_languages: int = 99,
    language: Optional[str] = None,
    task: Optional[str] = None,  # Literal["transcribe", "translate", None]
) -> Tokenizer:
    if language is not None:
        language = language.lower()
        if language not in LANGUAGES:
            if language in TO_LANGUAGE_CODE:
                language = TO_LANGUAGE_CODE[language]
            else:
                raise ValueError(f"Unsupported language: {language}")

    if multilingual:
        encoding_name = "multilingual_zh_ja_yue_char_del"
        language = language or "en"
        task = task or "transcribe"
    else:
        encoding_name = "gpt2"
        language = None
        task = None

    encoding = get_encoding(name=encoding_name, num_languages=num_languages)

    return Tokenizer(
        encoding=encoding, num_languages=num_languages, language=language, task=task
    )


class QwenTokenizer():
    def __init__(self, token_path, skip_special_tokens=True):
        super().__init__()
        # NOTE: non-chat model, all these special tokens keep randomly initialized.
        special_tokens = {
            'eos_token': '<|endoftext|>',
            'pad_token': '<|endoftext|>',
            'additional_special_tokens': [
                '<|im_start|>', '<|im_end|>', '<|endofprompt|>',
                '[breath]', '<strong>', '</strong>', '[noise]',
                '[laughter]', '[cough]', '[clucking]', '[accent]',
                '[quick_breath]',
                "<laughter>", "</laughter>",
                "[hissing]", "[sigh]", "[vocalized-noise]",
                "[lipsmack]", "[mn]"
            ]
        }
        self.tokenizer = AutoTokenizer.from_pretrained(token_path)
        self.tokenizer.add_special_tokens(special_tokens)
        self.skip_special_tokens = skip_special_tokens

    def encode(self, text, **kwargs):
        tokens = self.tokenizer([text], return_tensors="pt")
        tokens = tokens["input_ids"][0].cpu().tolist()
        return tokens

    def decode(self, tokens):
        tokens = torch.tensor(tokens, dtype=torch.int64)
        text = self.tokenizer.batch_decode([tokens], skip_special_tokens=self.skip_special_tokens)[0]
        return text

@lru_cache(maxsize=None)
def get_qwen_tokenizer(
    token_path: str,
    skip_special_tokens: bool
) -> QwenTokenizer:
    return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)