File size: 24,920 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#               2022 Ximalaya Inc (Yuguang Yang)
#               2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
#               NeMo(https://github.com/NVIDIA/NeMo)

from typing import Union

import math
import warnings
import torch
from torch.optim.lr_scheduler import _LRScheduler


class WarmupLR(_LRScheduler):
    """The WarmupLR scheduler

    This scheduler is almost same as NoamLR Scheduler except for following
    difference:

    NoamLR:
        lr = optimizer.lr * model_size ** -0.5
             * min(step ** -0.5, step * warmup_step ** -1.5)
    WarmupLR:
        lr = optimizer.lr * warmup_step ** 0.5
             * min(step ** -0.5, step * warmup_step ** -1.5)

    Note that the maximum lr equals to optimizer.lr in this scheduler.

    """

    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
        warmup_steps: Union[int, float] = 25000,
        last_epoch: int = -1,
    ):
        self.warmup_steps = warmup_steps

        # __init__() must be invoked before setting field
        # because step() is also invoked in __init__()
        super().__init__(optimizer, last_epoch)

    def __repr__(self):
        return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"

    def get_lr(self):
        step_num = self.last_epoch + 1
        if self.warmup_steps == 0:
            return [lr * step_num**-0.5 for lr in self.base_lrs]
        else:
            return [
                lr * self.warmup_steps**0.5 *
                min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
                for lr in self.base_lrs
            ]

    def set_step(self, step: int):
        self.last_epoch = step


class WarmupPolicy(_LRScheduler):
    """Adds warmup kwargs and warmup logic to lr policy.
    All arguments should be passed as kwargs for clarity,
    Args:
        warmup_steps: Number of training steps in warmup stage
        warmup_ratio: Ratio of warmup steps to total steps
        max_steps: Total number of steps while training or `None` for
            infinite training
    """

    def __init__(self,
                 optimizer,
                 *,
                 warmup_steps=None,
                 warmup_ratio=None,
                 max_steps=None,
                 min_lr=0.0,
                 last_epoch=-1):
        assert not (warmup_steps is not None and warmup_ratio is not None),\
            "Either use particular number of step or ratio"
        assert warmup_ratio is None or max_steps is not None, \
            "If there is a ratio, there should be a total steps"

        # It is necessary to assign all attributes *before* __init__,
        # as class is wrapped by an inner class.
        self.max_steps = max_steps
        if warmup_steps is not None:
            self.warmup_steps = warmup_steps
        elif warmup_ratio is not None:
            self.warmup_steps = int(warmup_ratio * max_steps)
        else:
            self.warmup_steps = 0

        self.min_lr = min_lr
        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed "
                "by the scheduler, please use `get_last_lr()`.",
                UserWarning,
                stacklevel=2)

        step = self.last_epoch

        if step <= self.warmup_steps and self.warmup_steps > 0:
            return self._get_warmup_lr(step)

        if step > self.max_steps:
            return [self.min_lr for _ in self.base_lrs]

        return self._get_lr(step)

    def _get_warmup_lr(self, step):
        lr_val = (step + 1) / (self.warmup_steps + 1)
        return [initial_lr * lr_val for initial_lr in self.base_lrs]

    def _get_lr(self, step):
        """Simple const lr policy"""
        return self.base_lrs


class SquareRootConstantPolicy(_LRScheduler):
    """Adds warmup kwargs and warmup logic to lr policy.
    All arguments should be passed as kwargs for clarity,
    Args:
        warmup_steps: Number of training steps in warmup stage
        warmup_ratio: Ratio of warmup steps to total steps
        max_steps: Total number of steps while training or `None` for
            infinite training
    """

    def __init__(self,
                 optimizer,
                 *,
                 constant_steps=None,
                 constant_ratio=None,
                 max_steps=None,
                 min_lr=0.0,
                 last_epoch=-1):
        assert not (constant_steps is not None
                    and constant_ratio is not None), \
            "Either use particular number of step or ratio"
        assert constant_ratio is None or max_steps is not None, \
            "If there is a ratio, there should be a total steps"

        # It is necessary to assign all attributes *before* __init__,
        # as class is wrapped by an inner class.
        self.max_steps = max_steps
        if constant_steps is not None:
            self.constant_steps = constant_steps
        elif constant_ratio is not None:
            self.constant_steps = int(constant_ratio * max_steps)
        else:
            self.constant_steps = 0

        self.constant_lr = 1 / (constant_steps**0.5)
        self.min_lr = min_lr
        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed "
                "by the scheduler, please use `get_last_lr()`.",
                UserWarning,
                stacklevel=2)

        step = self.last_epoch

        if step <= self.constant_steps:
            return [self.constant_lr for _ in self.base_lrs]

        if step > self.max_steps:
            return [self.min_lr for _ in self.base_lrs]

        return self._get_lr(step)

    def _get_lr(self, step):
        """Simple const lr policy"""
        return self.base_lrs


class WarmupHoldPolicy(WarmupPolicy):
    """Variant of WarmupPolicy which maintains high
       learning rate for a defined number of steps.
    All arguments should be passed as kwargs for clarity,
    Args:
        warmup_steps: Number of training steps in warmup stage
        warmup_ratio: Ratio of warmup steps to total steps
        hold_steps: Number of training steps to
                    hold the learning rate after warm up
        hold_ratio: Ratio of hold steps to total steps
        max_steps: Total number of steps while training or `None` for
            infinite training
    """

    def __init__(
        self,
        optimizer,
        *,
        warmup_steps=None,
        warmup_ratio=None,
        hold_steps=None,
        hold_ratio=None,
        max_steps=None,
        min_lr=0.0,
        last_epoch=-1,
    ):
        assert not (hold_steps is not None and hold_ratio is not None), \
            "Either use particular number of step or ratio"
        assert hold_ratio is None or max_steps is not None, \
            "If there is a ratio, there should be a total steps"

        self.min_lr = min_lr
        self._last_warmup_lr = 0.0

        # Necessary to duplicate as class attributes are hidden in inner class
        self.max_steps = max_steps
        if warmup_steps is not None:
            self.warmup_steps = warmup_steps
        elif warmup_ratio is not None:
            self.warmup_steps = int(warmup_ratio * max_steps)
        else:
            self.warmup_steps = 0

        if hold_steps is not None:
            self.hold_steps = hold_steps + self.warmup_steps
        elif hold_ratio is not None:
            self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
        else:
            self.hold_steps = 0

        super().__init__(
            optimizer,
            warmup_steps=warmup_steps,
            warmup_ratio=warmup_ratio,
            max_steps=max_steps,
            last_epoch=last_epoch,
            min_lr=min_lr,
        )

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed by the scheduler,"
                " "
                "please use `get_last_lr()`.",
                UserWarning,
                stacklevel=2)

        step = self.last_epoch

        # Warmup phase
        if step <= self.warmup_steps and self.warmup_steps > 0:
            return self._get_warmup_lr(step)

        # Hold phase
        if (step >= self.warmup_steps) and (step < self.hold_steps):
            return self.base_lrs

        if step > self.max_steps:
            return [self.min_lr for _ in self.base_lrs]

        return self._get_lr(step)


class WarmupAnnealHoldPolicy(_LRScheduler):
    """Adds warmup kwargs and warmup logic to lr policy.
    All arguments should be passed as kwargs for clarity,
    Args:
        warmup_steps: Number of training steps in warmup stage
        warmup_ratio: Ratio of warmup steps to total steps
        max_steps: Total number of steps while training or `None` for
            infinite training
        min_lr: Minimum lr to hold the learning rate after decay at.
        constant_steps: Number of steps to keep lr constant at.
        constant_ratio: Ratio of steps to keep lr constant.
    """

    def __init__(
        self,
        optimizer,
        *,
        warmup_steps=None,
        warmup_ratio=None,
        constant_steps=None,
        constant_ratio=None,
        max_steps=None,
        min_lr=0.0,
        last_epoch=-1,
    ):
        assert not (warmup_steps is not None
                    and warmup_ratio is not None), \
            "Either use particular number of step or ratio"
        assert not (constant_steps is not None
                    and constant_ratio is not None), \
            "Either use constant_steps or constant_ratio"
        assert warmup_ratio is None or max_steps is not None, \
            "If there is a ratio, there should be a total steps"

        # It is necessary to assign all attributes *before* __init__,
        # as class is wrapped by an inner class.
        self.max_steps = max_steps

        if warmup_steps is not None:
            self.warmup_steps = warmup_steps
        elif warmup_ratio is not None:
            self.warmup_steps = int(warmup_ratio * max_steps)
        else:
            self.warmup_steps = 0

        if constant_steps is not None:
            self.constant_steps = constant_steps
        elif constant_ratio is not None:
            self.constant_steps = int(constant_ratio * max_steps)
        else:
            self.constant_steps = 0

        self.decay_steps = max_steps - (self.constant_steps +
                                        self.warmup_steps)

        self.min_lr = min_lr
        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed "
                "by the scheduler, please use `get_last_lr()`.",
                UserWarning,
                stacklevel=2)

        step = self.last_epoch

        # Warmup steps
        if self.warmup_steps > 0 and step <= self.warmup_steps:
            return self._get_warmup_lr(step)

        # Constant steps after warmup and decay
        if self.constant_steps > 0 and (
                self.warmup_steps + self.decay_steps) < step <= self.max_steps:
            return self._get_constant_lr(step)

        # Min lr after max steps of updates
        if step > self.max_steps:
            return [self.min_lr for _ in self.base_lrs]

        return self._get_lr(step)

    def _get_warmup_lr(self, step):
        lr_val = (step + 1) / (self.warmup_steps + 1)
        return [initial_lr * lr_val for initial_lr in self.base_lrs]

    def _get_constant_lr(self, step):
        return [self.min_lr for _ in self.base_lrs]

    def _get_lr(self, step):
        """Simple const lr policy"""
        return self.base_lrs


def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
    mult = ((max_steps - step) / max_steps)**0.5
    out_lr = initial_lr * mult
    out_lr = max(out_lr, min_lr)
    return out_lr


def _square_annealing(initial_lr, step, max_steps, min_lr):
    mult = ((max_steps - step) / max_steps)**2
    out_lr = initial_lr * mult
    out_lr = max(out_lr, min_lr)
    return out_lr


def _cosine_annealing(initial_lr, step, max_steps, min_lr):
    mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
    out_lr = (initial_lr - min_lr) * mult + min_lr
    return out_lr


def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step,
                                         decay_steps, min_lr):
    assert max_lr > min_lr
    # Use linear warmup for the initial part.
    if warmup_steps > 0 and step <= warmup_steps:
        return max_lr * float(step) / float(warmup_steps)

    # For any steps larger than `decay_steps`, use `min_lr`.
    if step > warmup_steps + decay_steps:
        return min_lr

    # If we are done with the warmup period, use the decay style.
    num_steps_ = step - warmup_steps
    decay_steps_ = decay_steps
    decay_ratio = float(num_steps_) / float(decay_steps_)
    assert decay_ratio >= 0.0
    assert decay_ratio <= 1.0
    delta_lr = max_lr - min_lr

    coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)

    return min_lr + coeff * delta_lr


def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
    if cycle:
        multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
        decay_steps *= multiplier
    else:
        step = min(step, decay_steps)
    p = step / decay_steps
    lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
    lr += min_lr
    return lr


def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps,
                         decay_rate, min_lr):
    # hold_steps = total number of steps
    # to hold the LR, not the warmup + hold steps.
    T_warmup_decay = max(1, warmup_steps**decay_rate)
    T_hold_decay = max(1, (step - hold_steps)**decay_rate)
    lr = (initial_lr * T_warmup_decay) / T_hold_decay
    lr = max(lr, min_lr)
    return lr


class SquareAnnealing(WarmupPolicy):

    def __init__(self,
                 optimizer,
                 *,
                 max_steps,
                 min_lr=1e-5,
                 last_epoch=-1,
                 **kwargs):
        super().__init__(optimizer=optimizer,
                         max_steps=max_steps,
                         last_epoch=last_epoch,
                         min_lr=min_lr,
                         **kwargs)

    def _get_lr(self, step):
        new_lrs = [
            _square_annealing(
                initial_lr=initial_lr,
                step=step - self.warmup_steps,
                max_steps=self.max_steps - self.warmup_steps,
                min_lr=self.min_lr,
            ) for initial_lr in self.base_lrs
        ]
        return new_lrs


class SquareRootAnnealing(WarmupPolicy):

    def __init__(self,
                 optimizer,
                 *,
                 max_steps,
                 min_lr=0,
                 last_epoch=-1,
                 **kwargs):
        super().__init__(optimizer=optimizer,
                         max_steps=max_steps,
                         last_epoch=last_epoch,
                         min_lr=min_lr,
                         **kwargs)

    def _get_lr(self, step):
        new_lrs = [
            _squareroot_annealing(initial_lr=initial_lr,
                                  step=step,
                                  max_steps=self.max_steps,
                                  min_lr=self.min_lr)
            for initial_lr in self.base_lrs
        ]
        return new_lrs


class CosineAnnealing(WarmupAnnealHoldPolicy):

    def __init__(self,
                 optimizer,
                 *,
                 max_steps,
                 min_lr=0,
                 last_epoch=-1,
                 **kwargs):
        super().__init__(optimizer=optimizer,
                         max_steps=max_steps,
                         last_epoch=last_epoch,
                         min_lr=min_lr,
                         **kwargs)

    def _get_lr(self, step):
        for initial_lr in self.base_lrs:
            if initial_lr < self.min_lr:
                raise ValueError(
                    f"{self} received an initial learning rate "
                    f"that was lower than the minimum learning rate.")

        if self.constant_steps is None or self.constant_steps == 0:
            new_lrs = [
                _cosine_annealing(
                    initial_lr=initial_lr,
                    step=step - self.warmup_steps,
                    max_steps=self.max_steps - self.warmup_steps,
                    min_lr=self.min_lr,
                ) for initial_lr in self.base_lrs
            ]
        else:
            new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
        return new_lrs

    def _get_warmup_lr(self, step):
        if self.constant_steps is None or self.constant_steps == 0:
            return super()._get_warmup_lr(step)
        else:
            # Use linear warmup for the initial part.
            return self._get_linear_warmup_with_cosine_annealing_lr(step)

    def _get_constant_lr(self, step):
        # Only called when `constant_steps` > 0.
        return self._get_linear_warmup_with_cosine_annealing_lr(step)

    def _get_linear_warmup_with_cosine_annealing_lr(self, step):
        # Cosine Schedule for Megatron LM,
        # slightly different warmup schedule + constant LR at the end.
        new_lrs = [
            _linear_warmup_with_cosine_annealing(
                max_lr=self.base_lrs[0],
                warmup_steps=self.warmup_steps,
                step=step,
                decay_steps=self.decay_steps,
                min_lr=self.min_lr,
            ) for _ in self.base_lrs
        ]
        return new_lrs


class NoamAnnealing(_LRScheduler):

    def __init__(self,
                 optimizer,
                 *,
                 d_model,
                 warmup_steps=None,
                 warmup_ratio=None,
                 max_steps=None,
                 min_lr=0.0,
                 last_epoch=-1):
        self._normalize = d_model**(-0.5)
        assert not (warmup_steps is not None and warmup_ratio is not None), \
            "Either use particular number of step or ratio"
        assert warmup_ratio is None or max_steps is not None, \
            "If there is a ratio, there should be a total steps"

        # It is necessary to assign all attributes *before* __init__,
        # as class is wrapped by an inner class.
        self.max_steps = max_steps
        if warmup_steps is not None:
            self.warmup_steps = warmup_steps
        elif warmup_ratio is not None:
            self.warmup_steps = int(warmup_ratio * max_steps)
        else:
            self.warmup_steps = 0

        self.min_lr = min_lr
        super().__init__(optimizer, last_epoch)

    def get_lr(self):
        if not self._get_lr_called_within_step:
            warnings.warn(
                "To get the last learning rate computed "
                "by the scheduler, please use `get_last_lr()`.",
                UserWarning,
                stacklevel=2)

        step = max(1, self.last_epoch)

        for initial_lr in self.base_lrs:
            if initial_lr < self.min_lr:
                raise ValueError(
                    f"{self} received an initial learning rate "
                    f"that was lower than the minimum learning rate.")

        new_lrs = [
            self._noam_annealing(initial_lr=initial_lr, step=step)
            for initial_lr in self.base_lrs
        ]
        return new_lrs

    def _noam_annealing(self, initial_lr, step):
        if self.warmup_steps > 0:
            mult = self._normalize * min(step**(-0.5),
                                         step * (self.warmup_steps**(-1.5)))
        else:
            mult = self._normalize * step**(-0.5)

        out_lr = initial_lr * mult
        if step > self.warmup_steps:
            out_lr = max(out_lr, self.min_lr)
        return out_lr


class NoamHoldAnnealing(WarmupHoldPolicy):

    def __init__(self,
                 optimizer,
                 *,
                 max_steps,
                 decay_rate=0.5,
                 min_lr=0.0,
                 last_epoch=-1,
                 **kwargs):
        """
        From Nemo:
        Implementation of the Noam Hold Annealing policy
        from the SqueezeFormer paper.

        Unlike NoamAnnealing, the peak learning rate
        can be explicitly set for this scheduler.
        The schedule first performs linear warmup,
        then holds the peak LR, then decays with some schedule for
        the remainder of the steps.
        Therefore the min-lr is still dependent
        on the hyper parameters selected.

        It's schedule is determined by three factors-

        Warmup Steps: Initial stage, where linear warmup
            occurs uptil the peak LR is reached. Unlike NoamAnnealing,
            the peak LR is explicitly stated here instead of a scaling factor.

        Hold Steps: Intermediate stage, where the peak LR
            is maintained for some number of steps. In this region,
            the high peak LR allows the model to converge faster
            if training is stable. However the high LR
            may also cause instability during training.
            Should usually be a significant fraction of training
            steps (around 30-40% of the entire training steps).

        Decay Steps: Final stage, where the LR rapidly decays
            with some scaling rate (set by decay rate).
            To attain Noam decay, use 0.5,
            for Squeezeformer recommended decay, use 1.0.
            The fast decay after prolonged high LR during
            hold phase allows for rapid convergence.

        References:
            - [Squeezeformer:
            An Efficient Transformer for Automatic Speech Recognition]
            (https://arxiv.org/abs/2206.00888)

        Args:
            optimizer: Pytorch compatible Optimizer object.
            warmup_steps: Number of training steps in warmup stage
            warmup_ratio: Ratio of warmup steps to total steps
            hold_steps: Number of training steps to
                        hold the learning rate after warm up
            hold_ratio: Ratio of hold steps to total steps
            max_steps: Total number of steps while training or `None` for
                infinite training
            decay_rate: Float value describing the polynomial decay
                        after the hold period. Default value
                        of 0.5 corresponds to Noam decay.
            min_lr: Minimum learning rate.
        """
        self.decay_rate = decay_rate
        super().__init__(optimizer=optimizer,
                         max_steps=max_steps,
                         last_epoch=last_epoch,
                         min_lr=min_lr,
                         **kwargs)

    def _get_lr(self, step):
        if self.warmup_steps is None or self.warmup_steps == 0:
            raise ValueError(
                "Noam scheduler cannot be used without warmup steps")

        if self.hold_steps > 0:
            hold_steps = self.hold_steps - self.warmup_steps
        else:
            hold_steps = 0

        new_lrs = [
            _noam_hold_annealing(
                initial_lr,
                step=step,
                warmup_steps=self.warmup_steps,
                hold_steps=hold_steps,
                decay_rate=self.decay_rate,
                min_lr=self.min_lr,
            ) for initial_lr in self.base_lrs
        ]
        return new_lrs

    def set_step(self, step: int):
        self.last_epoch = step


class ConstantLR(_LRScheduler):
    """The ConstantLR scheduler

    This scheduler keeps a constant lr

    """

    def __init__(
        self,
        optimizer: torch.optim.Optimizer,
    ):
        # __init__() must be invoked before setting field
        # because step() is also invoked in __init__()
        super().__init__(optimizer)

    def get_lr(self):
        return self.base_lrs

    def set_step(self, step: int):
        self.last_epoch = step