File size: 7,159 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
import warnings
from importlib.util import find_spec
from pathlib import Path
from typing import Any, Callable, Dict, Tuple

import gdown
import matplotlib.pyplot as plt
import numpy as np
import torch
import wget
from omegaconf import DictConfig

from matcha.utils import pylogger, rich_utils

log = pylogger.get_pylogger(__name__)


def extras(cfg: DictConfig) -> None:
    """Applies optional utilities before the task is started.

    Utilities:
        - Ignoring python warnings
        - Setting tags from command line
        - Rich config printing

    :param cfg: A DictConfig object containing the config tree.
    """
    # return if no `extras` config
    if not cfg.get("extras"):
        log.warning("Extras config not found! <cfg.extras=null>")
        return

    # disable python warnings
    if cfg.extras.get("ignore_warnings"):
        log.info("Disabling python warnings! <cfg.extras.ignore_warnings=True>")
        warnings.filterwarnings("ignore")

    # prompt user to input tags from command line if none are provided in the config
    if cfg.extras.get("enforce_tags"):
        log.info("Enforcing tags! <cfg.extras.enforce_tags=True>")
        rich_utils.enforce_tags(cfg, save_to_file=True)

    # pretty print config tree using Rich library
    if cfg.extras.get("print_config"):
        log.info("Printing config tree with Rich! <cfg.extras.print_config=True>")
        rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)


def task_wrapper(task_func: Callable) -> Callable:
    """Optional decorator that controls the failure behavior when executing the task function.

    This wrapper can be used to:
        - make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
        - save the exception to a `.log` file
        - mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
        - etc. (adjust depending on your needs)

    Example:
    ```
    @utils.task_wrapper
    def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        ...
        return metric_dict, object_dict
    ```

    :param task_func: The task function to be wrapped.

    :return: The wrapped task function.
    """

    def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        # execute the task
        try:
            metric_dict, object_dict = task_func(cfg=cfg)

        # things to do if exception occurs
        except Exception as ex:
            # save exception to `.log` file
            log.exception("")

            # some hyperparameter combinations might be invalid or cause out-of-memory errors
            # so when using hparam search plugins like Optuna, you might want to disable
            # raising the below exception to avoid multirun failure
            raise ex

        # things to always do after either success or exception
        finally:
            # display output dir path in terminal
            log.info(f"Output dir: {cfg.paths.output_dir}")

            # always close wandb run (even if exception occurs so multirun won't fail)
            if find_spec("wandb"):  # check if wandb is installed
                import wandb

                if wandb.run:
                    log.info("Closing wandb!")
                    wandb.finish()

        return metric_dict, object_dict

    return wrap


def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
    """Safely retrieves value of the metric logged in LightningModule.

    :param metric_dict: A dict containing metric values.
    :param metric_name: The name of the metric to retrieve.
    :return: The value of the metric.
    """
    if not metric_name:
        log.info("Metric name is None! Skipping metric value retrieval...")
        return None

    if metric_name not in metric_dict:
        raise ValueError(
            f"Metric value not found! <metric_name={metric_name}>\n"
            "Make sure metric name logged in LightningModule is correct!\n"
            "Make sure `optimized_metric` name in `hparams_search` config is correct!"
        )

    metric_value = metric_dict[metric_name].item()
    log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")

    return metric_value


def intersperse(lst, item):
    # Adds blank symbol
    result = [item] * (len(lst) * 2 + 1)
    result[1::2] = lst
    return result


def save_figure_to_numpy(fig):
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    return data


def plot_tensor(tensor):
    plt.style.use("default")
    fig, ax = plt.subplots(figsize=(12, 3))
    im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.tight_layout()
    fig.canvas.draw()
    data = save_figure_to_numpy(fig)
    plt.close()
    return data


def save_plot(tensor, savepath):
    plt.style.use("default")
    fig, ax = plt.subplots(figsize=(12, 3))
    im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
    plt.colorbar(im, ax=ax)
    plt.tight_layout()
    fig.canvas.draw()
    plt.savefig(savepath)
    plt.close()


def to_numpy(tensor):
    if isinstance(tensor, np.ndarray):
        return tensor
    elif isinstance(tensor, torch.Tensor):
        return tensor.detach().cpu().numpy()
    elif isinstance(tensor, list):
        return np.array(tensor)
    else:
        raise TypeError("Unsupported type for conversion to numpy array")


def get_user_data_dir(appname="matcha_tts"):
    """
    Args:
        appname (str): Name of application

    Returns:
        Path: path to user data directory
    """

    MATCHA_HOME = os.environ.get("MATCHA_HOME")
    if MATCHA_HOME is not None:
        ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
    elif sys.platform == "win32":
        import winreg  # pylint: disable=import-outside-toplevel

        key = winreg.OpenKey(
            winreg.HKEY_CURRENT_USER,
            r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
        )
        dir_, _ = winreg.QueryValueEx(key, "Local AppData")
        ans = Path(dir_).resolve(strict=False)
    elif sys.platform == "darwin":
        ans = Path("~/Library/Application Support/").expanduser()
    else:
        ans = Path.home().joinpath(".local/share")

    final_path = ans.joinpath(appname)
    final_path.mkdir(parents=True, exist_ok=True)
    return final_path


def assert_model_downloaded(checkpoint_path, url, use_wget=True):
    if Path(checkpoint_path).exists():
        log.debug(f"[+] Model already present at {checkpoint_path}!")
        print(f"[+] Model already present at {checkpoint_path}!")
        return
    log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
    print(f"[-] Model not found at {checkpoint_path}! Will download it")
    checkpoint_path = str(checkpoint_path)
    if not use_wget:
        gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
    else:
        wget.download(url=url, out=checkpoint_path)