Spaces:
Running
on
L4
Running
on
L4
File size: 12,962 Bytes
5b4c852 41b44b0 e7933a9 1cf3136 c9dee22 e7933a9 1cf3136 41b44b0 8bab248 41b44b0 8bab248 41b44b0 8bab248 5b4c852 d36e350 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 da0a385 5b4c852 d4d1fbd 5b4c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
os.system('nvidia-smi')
# os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip')
print(torch.backends.cudnn.version())
import importlib
import sys
dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py'
dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py'
def modify_dynamic_modules_file(dynamic_modules_file):
if os.path.exists(dynamic_modules_file):
with open(dynamic_modules_file, 'r') as file:
lines = file.readlines()
with open(dynamic_modules_file, 'w') as file:
for line in lines:
if "from huggingface_hub import cached_download" in line:
file.write("from huggingface_hub import hf_hub_download, model_info\n")
else:
file.write(line)
modify_dynamic_modules_file(dynamic_modules_file1)
modify_dynamic_modules_file(dynamic_modules_file2)
import sys
import argparse
import gradio as gr
import numpy as np
import torchaudio
import random
import librosa
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && tar -xvf resource.tar')
from cosyvoice.cli.cosyvoice import CosyVoice2
from cosyvoice.utils.file_utils import load_wav, logging
from cosyvoice.utils.common import set_all_random_seed
inference_mode_list = ['3s Speedy Convertion', 'Natural Language Control']
instruct_dict = {'3s Speedy Convertion': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input prompt transcription\n3. click \'Speech Synthesis\' button',
'Natural Language Control': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input instruct\n3. click \'Speech Synthesis\' button'}
stream_mode_list = [('No', False), ('Yes', True)]
max_val = 0.8
def generate_seed():
seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": seed
}
def postprocess(speech, top_db=60, hop_length=220, win_length=440):
speech, _ = librosa.effects.trim(
speech, top_db=top_db,
frame_length=win_length,
hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
return speech
def change_instruction(mode_checkbox_group):
return instruct_dict[mode_checkbox_group]
def prompt_wav_recognition(prompt_wav):
res = asr_model.generate(input=prompt_wav,
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
use_itn=True,
)
text = res[0]["text"].split('|>')[-1]
return text
def generate_audio(tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
seed, stream):
sft_dropdown, speed = '', 1.0
if prompt_wav_upload is not None:
prompt_wav = prompt_wav_upload
elif prompt_wav_record is not None:
prompt_wav = prompt_wav_record
else:
prompt_wav = None
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
if mode_checkbox_group in ['Natural Language Control']:
if instruct_text == '':
gr.Warning('You are using Natural Language Control mode, please input the instruct.')
yield (target_sr, default_data)
if prompt_wav is None:
gr.Info('You are using Natural Language Control mode, please upload the prompt audio.')
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
if mode_checkbox_group in ['Cross-lingual Convertion']:
if cosyvoice.frontend.instruct is True:
gr.Warning('You are using the cross-lingual Convertion mode. The {} model does not support this mode. Please use the iic/CosyVoice-300M model.'.format(args.model_dir))
yield (target_sr, default_data)
if instruct_text != '':
gr.Info('You are using the cross-lingual Convertion mode. The instruct text will be ignored.')
if prompt_wav is None:
gr.Warning('You are using the cross-lingual Convertion mode. Please provide the prompt audio.')
yield (target_sr, default_data)
gr.Info('You are using the cross-lingual Convertion mode. Please ensure that the synthesis text and prompt text are in different languages.')
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
if mode_checkbox_group in ['3s Speedy Convertion', 'Cross-lingual Convertion']:
if prompt_wav is None:
gr.Warning('Empty prompt found, please check the prompt text.')
yield (target_sr, default_data)
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
gr.Warning('prompt wav sample rate {}, lower than {}.'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
yield (target_sr, default_data)
# sft mode only use sft_dropdown
if mode_checkbox_group in ['Pretrained Voice']:
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
gr.Info('You are using Pretrained Voice mode. Pretrained Voice/Instruct will be ingnored.')
# zero_shot mode only use prompt_wav prompt text
if mode_checkbox_group in ['3s Speedy Convertion']:
if prompt_text == '':
gr.Warning('Empty prompt found, please check the prompt text.')
yield (target_sr, default_data)
if instruct_text != '':
gr.Info('You are using 3s Speedy Convertion mode. Pretrained Voice/Instruct will be ingnored.')
info = torchaudio.info(prompt_wav)
if info.num_frames / info.sample_rate > 10:
gr.Warning('Please use prompt audio shorter than 10s.')
yield (target_sr, default_data)
if mode_checkbox_group == 'Pretrained Voice':
logging.info('get sft inference request')
set_all_random_seed(seed)
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '3s Speedy Convertion':
logging.info('get zero_shot inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == 'Cross-lingual Convertion':
logging.info('get cross_lingual inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
else:
logging.info('get instruct inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
set_all_random_seed(seed)
for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream, speed=speed):
yield (target_sr, i['tts_speech'].numpy().flatten())
def main():
with gr.Blocks() as demo:
gr.Markdown("### Repo [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
Pretrained Model [CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \
[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
gr.Markdown("#### Please input the text to synthesize, choose inference mode and follow the controlling steps below.")
tts_text = gr.Textbox(label="Text to synthesize", lines=1, value="CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities. CosyVoice迎来全面升级,提供更准、更稳、更快、 更好的语音生成能力。")
with gr.Row():
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='Inference Mode', value=inference_mode_list[0])
instruction_text = gr.Text(label="Instructions", value=instruct_dict[inference_mode_list[0]], scale=0.5)
stream = gr.Radio(choices=stream_mode_list, label='Streaming or not', value=stream_mode_list[0][1])
with gr.Column(scale=0.25):
seed_button = gr.Button(value="\U0001F3B2")
seed = gr.Number(value=0, label="Random Seed")
with gr.Row():
prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='Prompt wav file (sample rate >= 16kHz)')
prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='Record prompt from your microphone')
prompt_text = gr.Textbox(label="Prompt Transcription", lines=1, placeholder="Prompt transcription (auto ASR, you can correct the recognition results)", value='')
instruct_text = gr.Textbox(label="Instruct", lines=1, placeholder="Instruct transcription. e.g. A old sea captain, navigates life's storms with timeless wisdom and a heart of gold.", value='')
generate_button = gr.Button("Speech Synthesis")
audio_output = gr.Audio(label="Audio Output", autoplay=True, streaming=True)
seed_button.click(generate_seed, inputs=[], outputs=seed)
generate_button.click(generate_audio,
inputs=[tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
seed, stream],
outputs=[audio_output])
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text])
prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text])
demo.launch(max_threads=4)
if __name__ == '__main__':
load_jit = True if os.environ.get('jit') == '1' else False
load_onnx = True if os.environ.get('onnx') == '1' else False
load_trt = True if os.environ.get('trt') == '1' else False
logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt))
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, load_trt=load_trt)
sft_spk = cosyvoice.list_avaliable_spks()
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
for stream in [True, False]:
for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)):
continue
prompt_sr, target_sr = 16000, 24000
default_data = np.zeros(target_sr)
model_dir = "iic/SenseVoiceSmall"
asr_model = AutoModel(
model=model_dir,
disable_update=True,
log_level='DEBUG',
device="cuda:0")
main()
|