File size: 12,962 Bytes
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
41b44b0
e7933a9
1cf3136
 
c9dee22
e7933a9
1cf3136
41b44b0
 
 
8bab248
 
41b44b0
8bab248
41b44b0
 
 
 
 
 
 
 
 
 
8bab248
 
 
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36e350
5b4c852
 
 
 
 
da0a385
 
 
 
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0a385
5b4c852
da0a385
5b4c852
 
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
 
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
 
da0a385
5b4c852
 
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
da0a385
5b4c852
 
da0a385
5b4c852
 
da0a385
5b4c852
 
da0a385
5b4c852
 
 
 
da0a385
5b4c852
 
 
 
 
da0a385
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0a385
 
5b4c852
 
 
da0a385
5b4c852
da0a385
5b4c852
da0a385
 
 
5b4c852
 
da0a385
5b4c852
 
da0a385
 
 
 
5b4c852
da0a385
5b4c852
da0a385
5b4c852
 
 
 
 
 
 
 
 
d4d1fbd
 
5b4c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch

os.system('nvidia-smi')
# os.system('apt update -y && apt-get install -y apt-utils && apt install -y unzip')
print(torch.backends.cudnn.version())

import importlib
import sys

dynamic_modules_file1 = '/home/user/.pyenv/versions/3.10.16/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py'
dynamic_modules_file2 = '/usr/local/lib/python3.10/site-packages/diffusers/utils/dynamic_modules_utils.py'

def modify_dynamic_modules_file(dynamic_modules_file):
    if os.path.exists(dynamic_modules_file):
        with open(dynamic_modules_file, 'r') as file:
            lines = file.readlines()
        with open(dynamic_modules_file, 'w') as file:
            for line in lines:
                if "from huggingface_hub import cached_download" in line:
                    file.write("from huggingface_hub import hf_hub_download, model_info\n")
                else:
                    file.write(line)

modify_dynamic_modules_file(dynamic_modules_file1)
modify_dynamic_modules_file(dynamic_modules_file2)

import sys
import argparse
import gradio as gr
import numpy as np
import torchaudio
import random
import librosa
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))

from modelscope import snapshot_download
snapshot_download('iic/CosyVoice2-0.5B', local_dir='pretrained_models/CosyVoice2-0.5B')
snapshot_download('iic/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
os.system('cd pretrained_models/CosyVoice-ttsfrd/ && pip install ttsfrd_dependency-0.1-py3-none-any.whl && pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && tar -xvf resource.tar')

from cosyvoice.cli.cosyvoice import CosyVoice2
from cosyvoice.utils.file_utils import load_wav, logging
from cosyvoice.utils.common import set_all_random_seed

inference_mode_list = ['3s Speedy Convertion', 'Natural Language Control']
instruct_dict = {'3s Speedy Convertion': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input prompt transcription\n3. click \'Speech Synthesis\' button',
                 'Natural Language Control': '1. Upload prompt wav file (or record from mic), no longer than 30s, wav file will be used if provided at the same time\n2. Input instruct\n3. click \'Speech Synthesis\' button'}
stream_mode_list = [('No', False), ('Yes', True)]
max_val = 0.8


def generate_seed():
    seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": seed
    }


def postprocess(speech, top_db=60, hop_length=220, win_length=440):
    speech, _ = librosa.effects.trim(
        speech, top_db=top_db,
        frame_length=win_length,
        hop_length=hop_length
    )
    if speech.abs().max() > max_val:
        speech = speech / speech.abs().max() * max_val
    speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
    return speech


def change_instruction(mode_checkbox_group):
    return instruct_dict[mode_checkbox_group]

def prompt_wav_recognition(prompt_wav):
    res = asr_model.generate(input=prompt_wav,
                             language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
                             use_itn=True,
    )
    text = res[0]["text"].split('|>')[-1]
    return text

def generate_audio(tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
                   seed, stream):
    sft_dropdown, speed = '', 1.0
    if prompt_wav_upload is not None:
        prompt_wav = prompt_wav_upload
    elif prompt_wav_record is not None:
        prompt_wav = prompt_wav_record
    else:
        prompt_wav = None
    # if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
    if mode_checkbox_group in ['Natural Language Control']:
        if instruct_text == '':
            gr.Warning('You are using Natural Language Control mode, please input the instruct.')
            yield (target_sr, default_data)
        if prompt_wav is None:
            gr.Info('You are using Natural Language Control mode, please upload the prompt audio.')
    # if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
    if mode_checkbox_group in ['Cross-lingual Convertion']:
        if cosyvoice.frontend.instruct is True:
            gr.Warning('You are using the cross-lingual Convertion mode. The {} model does not support this mode. Please use the iic/CosyVoice-300M model.'.format(args.model_dir))
            yield (target_sr, default_data)
        if instruct_text != '':
            gr.Info('You are using the cross-lingual Convertion mode. The instruct text will be ignored.')
        if prompt_wav is None:
            gr.Warning('You are using the cross-lingual Convertion mode. Please provide the prompt audio.')
            yield (target_sr, default_data)
        gr.Info('You are using the cross-lingual Convertion mode. Please ensure that the synthesis text and prompt text are in different languages.')
    # if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
    if mode_checkbox_group in ['3s Speedy Convertion', 'Cross-lingual Convertion']:
        if prompt_wav is None:
            gr.Warning('Empty prompt found, please check the prompt text.')
            yield (target_sr, default_data)
        if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
            gr.Warning('prompt wav sample rate {}, lower than {}.'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr))
            yield (target_sr, default_data)
    # sft mode only use sft_dropdown
    if mode_checkbox_group in ['Pretrained Voice']:
        if instruct_text != '' or prompt_wav is not None or prompt_text != '':
            gr.Info('You are using Pretrained Voice mode. Pretrained Voice/Instruct will be ingnored.')
    # zero_shot mode only use prompt_wav prompt text
    if mode_checkbox_group in ['3s Speedy Convertion']:
        if prompt_text == '':
            gr.Warning('Empty prompt found, please check the prompt text.')
            yield (target_sr, default_data)
        if instruct_text != '':
            gr.Info('You are using 3s Speedy Convertion mode. Pretrained Voice/Instruct will be ingnored.')
        info = torchaudio.info(prompt_wav)
        if info.num_frames / info.sample_rate > 10:
            gr.Warning('Please use prompt audio shorter than 10s.')
            yield (target_sr, default_data)

    if mode_checkbox_group == 'Pretrained Voice':
        logging.info('get sft inference request')
        set_all_random_seed(seed)
        for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
            yield (target_sr, i['tts_speech'].numpy().flatten())
    elif mode_checkbox_group == '3s Speedy Convertion':
        logging.info('get zero_shot inference request')
        prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
        set_all_random_seed(seed)
        for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
            yield (target_sr, i['tts_speech'].numpy().flatten())
    elif mode_checkbox_group == 'Cross-lingual Convertion':
        logging.info('get cross_lingual inference request')
        prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
        set_all_random_seed(seed)
        for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
            yield (target_sr, i['tts_speech'].numpy().flatten())
    else:
        logging.info('get instruct inference request')
        prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
        set_all_random_seed(seed)
        for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream, speed=speed):
            yield (target_sr, i['tts_speech'].numpy().flatten())


def main():
    with gr.Blocks() as demo:
        gr.Markdown("### Repo [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
                    Pretrained Model [CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B) \
                    [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
                    [CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
                    [CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
        gr.Markdown("#### Please input the text to synthesize, choose inference mode and follow the controlling steps below.")

        tts_text = gr.Textbox(label="Text to synthesize", lines=1, value="CosyVoice is undergoing a comprehensive upgrade, providing more accurate, stable, faster, and better voice generation capabilities. CosyVoice迎来全面升级,提供更准、更稳、更快、 更好的语音生成能力。")
        with gr.Row():
            mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='Inference Mode', value=inference_mode_list[0])
            instruction_text = gr.Text(label="Instructions", value=instruct_dict[inference_mode_list[0]], scale=0.5)
            stream = gr.Radio(choices=stream_mode_list, label='Streaming or not', value=stream_mode_list[0][1])
            with gr.Column(scale=0.25):
                seed_button = gr.Button(value="\U0001F3B2")
                seed = gr.Number(value=0, label="Random Seed")

        with gr.Row():
            prompt_wav_upload = gr.Audio(sources='upload', type='filepath', label='Prompt wav file (sample rate >= 16kHz)')
            prompt_wav_record = gr.Audio(sources='microphone', type='filepath', label='Record prompt from your microphone')
        prompt_text = gr.Textbox(label="Prompt Transcription", lines=1, placeholder="Prompt transcription (auto ASR, you can correct the recognition results)", value='')
        instruct_text = gr.Textbox(label="Instruct", lines=1, placeholder="Instruct transcription. e.g. A old sea captain, navigates life's storms with timeless wisdom and a heart of gold.", value='')

        generate_button = gr.Button("Speech Synthesis")

        audio_output = gr.Audio(label="Audio Output", autoplay=True, streaming=True)

        seed_button.click(generate_seed, inputs=[], outputs=seed)
        generate_button.click(generate_audio,
                              inputs=[tts_text, mode_checkbox_group, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
                                      seed, stream],
                              outputs=[audio_output])
        mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
        prompt_wav_upload.change(fn=prompt_wav_recognition, inputs=[prompt_wav_upload], outputs=[prompt_text])
        prompt_wav_record.change(fn=prompt_wav_recognition, inputs=[prompt_wav_record], outputs=[prompt_text])
        
    demo.launch(max_threads=4)


if __name__ == '__main__':
    load_jit = True if os.environ.get('jit') == '1' else False
    load_onnx = True if os.environ.get('onnx') == '1' else False
    load_trt = True if os.environ.get('trt') == '1' else False
    logging.info('cosyvoice args load_jit {} load_onnx {} load_trt {}'.format(load_jit, load_onnx, load_trt))
    cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=load_jit, load_onnx=load_onnx, load_trt=load_trt)
    sft_spk = cosyvoice.list_avaliable_spks()
    prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)
    for stream in [True, False]:
        for i, j in enumerate(cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k, stream=stream)):
            continue
    prompt_sr, target_sr = 16000, 24000
    default_data = np.zeros(target_sr)

    model_dir = "iic/SenseVoiceSmall"
    asr_model = AutoModel(
        model=model_dir,
        disable_update=True,
        log_level='DEBUG',
        device="cuda:0")
    main()